Adalm1000_Battery_SMU/MainCode/adalm1000_logger.py
Jan ded39ec158 MainCode/adalm1000_logger.py aktualisiert
Signal disconnect warning: disconnect() failed between 'update_signal' and all its connections
still problems when switching
D
2025-08-07 03:10:53 +02:00

2796 lines
114 KiB
Python

# -*- coding: utf-8 -*-
import os
import time
import csv
import threading
import traceback
from datetime import datetime
import numpy as np
import matplotlib
matplotlib.use('Qt5Agg')
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
from collections import deque
from queue import Queue, Full, Empty
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
QGridLayout, QLabel, QPushButton, QLineEdit, QCheckBox,
QFrame, QMessageBox, QFileDialog, QComboBox)
from PyQt5.QtCore import Qt, QTimer, pyqtSignal, pyqtSlot, QObject, QThread
from PyQt5.QtGui import QDoubleValidator
from PyQt5 import sip
import pysmu
from pysmu import Session
class DeviceManager:
def __init__(self, dev):
self.dev = dev
self.serial = dev.serial
self.measurement_thread = None
self.is_running = False
self.is_recording = False
self.log_file = None
self.log_writer = None
# Datenpuffer
max_data_points = 36000
self.time_data = deque(maxlen=max_data_points)
self.voltage_data = deque(maxlen=max_data_points)
self.current_data = deque(maxlen=max_data_points)
self.display_time_data = deque(maxlen=10000)
self.display_voltage_data = deque(maxlen=10000)
self.display_current_data = deque(maxlen=10000)
# Testzustand
self.capacity_ah = 0.0
self.energy = 0.0
self.charge_capacity = 0.0
self.coulomb_efficiency = 0.0
self.cycle_count = 0
self.test_phase = "Idle"
self.start_time = time.time()
# Logging
self.current_cycle_file = None
self.log_writer = None
# Downsampling
self.downsample_factor = 1
self.aggregation_buffer = {
'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0
}
self.consecutive_read_errors = 0 # Track read failures
self.max_consecutive_errors = 5 # Threshold before reset
self.status_colors = {
"connected": "green",
"disconnected": "red",
"error": "orange",
}
def handle_read_error(self, increment=1):
"""Enhanced device recovery with proper session handling"""
self.consecutive_read_errors += increment
if self.consecutive_read_errors >= self.max_consecutive_errors:
try:
print("Attempting device recovery...")
# 1. First try soft reset
try:
if hasattr(self.dev, 'reset'):
self.dev.reset()
time.sleep(0.5)
return True
except Exception as e:
print(f"Soft reset failed: {e}")
# 2. Full reinitialization
global_session = pysmu.Session()
devices = global_session.devices
if not devices:
print("No devices found after rescan")
return False
# Find our device by serial
for new_dev in devices:
if new_dev.serial == self.serial:
self.dev = new_dev
self.consecutive_read_errors = 0
print("Device reinitialized successfully")
return True
print("Original device not found after rescan")
return False
except Exception as e:
print(f"Device recovery failed: {e}")
return False
return True
def start_measurement(self, interval=0.1):
self.stop_measurement() # Ensure any existing thread is stopped
self.measurement_thread = MeasurementThread(self.dev, interval, self)
self.measurement_thread.start()
self.is_running = True
def stop_measurement(self):
if self.measurement_thread:
try:
# Disconnect signals first
try:
self.measurement_thread.update_signal.disconnect()
self.measurement_thread.error_signal.disconnect()
except (RuntimeError, TypeError):
pass
# Then stop the thread
self.measurement_thread.stop()
if not self.measurement_thread.wait(500):
self.measurement_thread.terminate()
self.measurement_thread = None
except Exception as e:
print(f"Error stopping measurement thread: {e}")
self.is_running = False
def reset_data(self):
self.time_data.clear()
self.voltage_data.clear()
self.current_data.clear()
self.display_time_data.clear()
self.display_voltage_data.clear()
self.display_current_data.clear()
self.aggregation_buffer = {
'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0
}
self.capacity_ah = 0.0
self.energy = 0.0
self.charge_capacity = 0.0
self.coulomb_efficiency = 0.0
self.cycle_count = 0
self.start_time = time.time()
self.test_phase = "Idle"
class DeviceDisconnectedError(Exception):
pass
class MeasurementThread(QThread):
update_signal = pyqtSignal(float, float, float)
error_signal = pyqtSignal(str)
def __init__(self, device, interval, parent_manager):
super().__init__()
self.device = device
self.interval = interval
self._running = False
self.filter_window_size = 10
self.voltage_window = []
self.current_window = []
self.start_time = None
self.measurement_queue = Queue(maxsize=1)
self.current_direction = 1
self.parent_manager = parent_manager
def stop(self):
self._running = False
try:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
except Exception as e:
print(f"Error stopping device: {e}")
def run(self):
"""Measurement loop with enhanced recovery"""
self._running = True
self.start_time = time.time()
while self._running:
try:
samples = self.device.read(self.filter_window_size, 500, True)
# --- Handle empty samples ---
if not samples:
consecutive_errors += 1
if consecutive_errors >= max_consecutive_errors:
# Attempt device reset through parent manager
if hasattr(self, 'parent_manager'):
if not self.parent_manager.handle_read_error():
raise DeviceDisconnectedError("Persistent read failures")
consecutive_errors = 0 # Reset after handling
time.sleep(0.1)
continue
# Reset error counter on successful read
consecutive_errors = 0
# --- Process samples ---
current_time = time.time() - self.start_time
# Get voltage from Channel B (HI_Z mode) and current from Channel A
raw_voltage = np.mean([s[1][0] for s in samples]) # Channel B voltage
raw_current = np.mean([s[0][1] for s in samples]) * self.current_direction # Channel A current with direction
# Update filter windows
self.voltage_window.append(raw_voltage)
self.current_window.append(raw_current)
if len(self.voltage_window) > self.filter_window_size:
self.voltage_window.pop(0)
self.current_window.pop(0)
voltage = np.mean(self.voltage_window)
current = np.mean(self.current_window)
# Validate measurements before processing
if not (0.0 <= voltage <= 5.0): # ADALM1000 voltage range
raise ValueError(f"Voltage out of range: {voltage:.4f}V")
if not (-0.25 <= current <= 0.25): # ADALM1000 current range
raise ValueError(f"Current out of range: {current:.4f}A")
# Emit update
self.update_signal.emit(voltage, current, current_time)
# Store measurement
try:
self.measurement_queue.put_nowait((voltage, current))
except Full:
pass # It's OK to skip if queue is full
# Adaptive sleep based on interval
time.sleep(max(0.05, self.interval))
except DeviceDisconnectedError as e:
self.error_signal.emit(f"Device disconnected: {str(e)}")
if not self.parent_manager.handle_read_error():
break # Stop if recovery failed
time.sleep(1) # Wait before retrying
except Exception as e:
self.error_signal.emit(f"Read error: {str(e)}")
if not self.parent_manager.handle_read_error():
break
time.sleep(1)
def set_direction(self, direction):
"""Set current direction (1 for source, -1 for sink)"""
self.current_direction = direction
class TestSequenceWorker(QObject):
finished = pyqtSignal()
update_phase = pyqtSignal(str)
update_status = pyqtSignal(str)
test_completed = pyqtSignal()
error_occurred = pyqtSignal(str)
def __init__(self, device, test_current, charge_cutoff, discharge_cutoff, rest_time, continuous_mode, parent):
super().__init__()
self.device = device
self.test_current = test_current
self.charge_cutoff = charge_cutoff
self.discharge_cutoff = discharge_cutoff
self.rest_time = rest_time * 3600 # Convert hours to seconds
self.continuous_mode = continuous_mode
self.parent = parent
self._running = True
self.voltage_timeout = 0.5 # seconds
def get_latest_measurement(self):
"""Thread-safe measurement reading with timeout"""
try:
return self.parent.measurement_thread.measurement_queue.get(
timeout=self.voltage_timeout
)
except Empty:
return (None, None) # Return tuple for unpacking
def charge_phase(self):
"""Handle the battery charging phase"""
self.update_phase.emit("Charge")
self.update_status.emit(f"Charging to {self.charge_cutoff}V @ {self.test_current:.4f}A")
try:
# Configure channels - Channel A sources current, Channel B measures voltage
self.device.channels['B'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].mode = pysmu.Mode.SIMV
self.device.channels['A'].constant(self.test_current)
self.parent.measurement_thread.set_direction(1) # Source current
# Small delay to allow current to stabilize
time.sleep(0.1)
while self._running:
voltage, current = self.get_latest_measurement()
if voltage is None:
continue
# Update parent's data for logging/display
with self.parent.plot_mutex:
if len(self.parent.voltage_data) > 0:
self.parent.voltage_data[-1] = voltage
self.parent.current_data[-1] = current
if voltage >= self.charge_cutoff:
break
time.sleep(0.1)
finally:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
def discharge_phase(self):
"""Handle the battery discharging phase"""
voltage, _ = self.get_latest_measurement()
if voltage is not None and voltage <= self.discharge_cutoff:
self.update_status.emit(f"Already below discharge cutoff ({voltage:.4f}V ≤ {self.discharge_cutoff}V)")
return
self.update_phase.emit("Discharge")
self.update_status.emit(f"Discharging to {self.discharge_cutoff}V @ {self.test_current:.4f}A")
try:
# Configure channels - Channel A sinks current, Channel B measures voltage
self.device.channels['B'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].mode = pysmu.Mode.SIMV
self.device.channels['A'].constant(-self.test_current)
self.parent.measurement_thread.set_direction(-1) # Sink current
# Small delay to allow current to stabilize
time.sleep(0.1)
while self._running:
voltage, current = self.get_latest_measurement()
if voltage is None:
continue
# Update parent's data for logging/display
with self.parent.plot_mutex:
if len(self.parent.voltage_data) > 0:
self.parent.voltage_data[-1] = voltage
self.parent.current_data[-1] = current
if voltage <= self.discharge_cutoff:
break
time.sleep(0.1)
finally:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
def rest_phase(self, phase_name):
"""Handle rest period between phases"""
self.update_phase.emit(f"Resting ({phase_name})")
rest_end = time.time() + self.rest_time
while time.time() < rest_end and self._running:
time_left = max(0, rest_end - time.time())
self.update_status.emit(f"Resting | Time left: {time_left/60:.1f} min")
time.sleep(1)
def stop(self):
self._running = False
try:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
except Exception as e:
print(f"Error stopping device: {e}")
def run(self):
"""Main test sequence loop"""
try:
first_cycle = True # Ensure at least one cycle runs
while (self._running and
(self.parent.continuous_mode_check.isChecked() or first_cycle)):
self.parent.request_stop = False
self.parent.cycle_count += 1
first_cycle = False # Only True for the first cycle
# 1. Charge phase (constant current)
self.charge_phase()
if not self._running or self.parent.request_stop:
break
# 2. Rest period after charge
self.rest_phase("Post-Charge")
if not self._running or self.parent.request_stop:
break
# 3. Discharge phase (capacity measurement)
self.discharge_phase()
if not self._running or self.parent.request_stop:
break
# 4. Rest period after discharge (only if not stopping)
if self._running and not self.parent.request_stop:
self.rest_phase("Post-Discharge")
# Calculate Coulomb efficiency if not stopping
if not self.parent.request_stop and self.parent.charge_capacity > 0:
self.parent.coulomb_efficiency = (
self.parent.capacity_ah / self.parent.charge_capacity
) * 100
# Test completed
self.test_completed.emit()
except Exception as e:
self.error_occurred.emit(f"Test sequence error: {str(e)}")
finally:
self.finished.emit()
class DischargeWorker(QObject):
finished = pyqtSignal()
update_status = pyqtSignal(str)
test_completed = pyqtSignal()
error_occurred = pyqtSignal(str)
def __init__(self, device, test_current, discharge_cutoff, parent):
super().__init__()
self.device = device
self.test_current = test_current
self.discharge_cutoff = discharge_cutoff
self.parent = parent
self._running = True
self.voltage_timeout = 0.5 # seconds
def get_latest_measurement(self):
"""Thread-safe measurement reading with timeout"""
try:
return self.parent.measurement_thread.measurement_queue.get(
timeout=self.voltage_timeout
)
except Empty:
return (None, None) # Return tuple for unpacking
def discharge_phase(self):
"""Handle the battery discharging phase"""
voltage, _ = self.get_latest_measurement()
if voltage is not None and voltage <= self.discharge_cutoff:
self.update_status.emit(f"Already below discharge cutoff ({voltage:.4f}V ≤ {self.discharge_cutoff}V)")
return
self.update_status.emit(f"Discharging to {self.discharge_cutoff}V @ {self.test_current:.4f}A")
try:
# Configure channels - Channel A sinks current, Channel B measures voltage
self.device.channels['B'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].mode = pysmu.Mode.SIMV
self.device.channels['A'].constant(-self.test_current)
self.parent.measurement_thread.set_direction(-1) # Sink current
# Small delay to allow current to stabilize
time.sleep(0.1)
while self._running:
voltage, current = self.get_latest_measurement()
if voltage is None:
continue
# Update parent's data for logging/display
with self.parent.plot_mutex:
if len(self.parent.voltage_data) > 0:
self.parent.voltage_data[-1] = voltage
self.parent.current_data[-1] = current
if voltage <= self.discharge_cutoff:
break
time.sleep(0.1)
finally:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
def stop(self):
self._running = False
try:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
except Exception as e:
print(f"Error stopping device: {e}")
def run(self):
"""Main discharge sequence"""
try:
self.parent.request_stop = False
self.parent.cycle_count = 1 # Only one discharge cycle
# Discharge phase
self.discharge_phase()
if not self._running or self.parent.request_stop:
return
# Test completed
self.test_completed.emit()
except Exception as e:
self.error_occurred.emit(f"Discharge error: {str(e)}")
finally:
self.finished.emit()
class ChargeWorker(QObject):
finished = pyqtSignal()
update_status = pyqtSignal(str)
test_completed = pyqtSignal()
error_occurred = pyqtSignal(str)
def __init__(self, device, test_current, charge_cutoff, parent):
super().__init__()
self.device = device
self.test_current = test_current
self.charge_cutoff = charge_cutoff
self.parent = parent
self._running = True
def run(self):
"""Main charge sequence"""
try:
self.parent.measurement_thread.set_direction(1) # Source current
# Configure channels - Channel A sources current, Channel B measures voltage
self.device.channels['B'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].mode = pysmu.Mode.SIMV
self.device.channels['A'].constant(self.test_current)
time.sleep(0.1) # Allow current to stabilize
while self._running:
voltage, current = self.parent.get_latest_measurement()
if voltage is None:
continue
# Update parent's data for logging/display
with self.parent.plot_mutex:
if len(self.parent.voltage_data) > 0:
self.parent.voltage_data[-1] = voltage
self.parent.current_data[-1] = current
if voltage >= self.charge_cutoff:
break
time.sleep(0.1)
self.test_completed.emit()
except Exception as e:
self.error_occurred.emit(f"Charge error: {str(e)}")
finally:
self.device.channels['A'].constant(0)
self.finished.emit()
def stop(self):
self._running = False
try:
self.device.channels['A'].mode = pysmu.Mode.HI_Z
self.device.channels['A'].constant(0)
except Exception as e:
print(f"Error stopping device: {e}")
class BatteryTester(QMainWindow):
def __init__(self):
self.plot_mutex = threading.Lock()
super().__init__()
self.devices = {}
self.active_device = None
self.last_logged_phase = None
# Color scheme - MUST BE DEFINED FIRST
self.bg_color = "#2E3440"
self.fg_color = "#D8DEE9"
self.accent_color = "#5E81AC"
self.warning_color = "#BF616A"
self.success_color = "#A3BE8C"
# Status colors - MUST BE DEFINED BEFORE init_device()
self.status_colors = {
"connected": "green",
"disconnected": "red",
"error": "orange",
"active": self.accent_color,
"warning": self.warning_color
}
# Device and measurement state
self.session_active = False
self.measuring = False
self.test_running = False
self.continuous_mode = False
self.request_stop = False
self.interval = 0.1
self.log_dir = os.path.expanduser("~/adalm1000/logs")
os.makedirs(self.log_dir, exist_ok=True)
# Data buffers
self.aggregation_buffer = {
'time': [], 'voltage': [], 'current': [],
'count': 0, 'last_plot_time': 0
}
self.phase_data = deque()
self.downsample_factor = 1 # Initial kein Downsampling
self.downsample_counter = 0
# Initialize all measurement variables
self.capacity_ah = 0.0
self.energy = 0.0
self.charge_capacity = 0.0
self.coulomb_efficiency = 0.0
self.cycle_count = 0
self.start_time = time.time()
self.last_update_time = self.start_time
self.capacity = 1.0
self.c_rate = 0.1
self.charge_cutoff = 1.43
self.discharge_cutoff = 0.01
self.rest_time = 0.5
# Initialize UI and device
self.setup_ui()
self.init_device()
self.current_mode = "Live Monitoring" # Default mode
# Set window properties
self.setWindowTitle("ADALM1000 - Battery Tester (Multi-Mode)")
self.resize(1000, 800)
self.setMinimumSize(800, 700)
# Status update timer
self.status_timer = QTimer()
self.status_timer.timeout.connect(self.update_status_and_plot)
self.status_timer.start(1000) #every second
def setup_ui(self):
"""Configure the user interface with all elements properly organized"""
# Main widget and layout
self.central_widget = QWidget()
self.setCentralWidget(self.central_widget)
self.main_layout = QVBoxLayout(self.central_widget)
self.main_layout.setContentsMargins(10, 10, 10, 10)
# Mode and device selection frame
mode_frame = QFrame()
mode_frame.setFrameShape(QFrame.StyledPanel)
mode_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}")
mode_layout = QHBoxLayout(mode_frame)
# Test mode selection
self.mode_label = QLabel("Test Mode:")
self.mode_label.setStyleSheet(f"color: {self.fg_color};")
mode_layout.addWidget(self.mode_label)
self.mode_combo = QComboBox()
self.mode_combo.addItems(["Live Monitoring", "Discharge Test", "Charge Test", "Cycle Test"])
self.mode_combo.setStyleSheet(f"""
QComboBox {{
background-color: #3B4252;
color: {self.fg_color};
border: 1px solid #4C566A;
border-radius: 3px;
padding: 2px;
}}
""")
self.mode_combo.currentTextChanged.connect(self.change_mode)
mode_layout.addWidget(self.mode_combo, 1)
# Device selection
self.device_label = QLabel("Device:")
self.device_label.setStyleSheet(f"color: {self.fg_color};")
mode_layout.addWidget(self.device_label)
self.device_combo = QComboBox()
self.device_combo.setStyleSheet(f"""
QComboBox {{
background-color: #3B4252;
color: {self.fg_color};
border: 1px solid #4C566A;
border-radius: 3px;
padding: 2px;
}}
""")
self.device_combo.currentIndexChanged.connect(self.change_device)
mode_layout.addWidget(self.device_combo, 1)
self.main_layout.addWidget(mode_frame)
# Header area
header_frame = QFrame()
header_frame.setFrameShape(QFrame.NoFrame)
header_layout = QHBoxLayout(header_frame)
header_layout.setContentsMargins(0, 0, 0, 0)
self.title_label = QLabel("ADALM1000 Battery Tester")
self.title_label.setStyleSheet(f"font-size: 14pt; font-weight: bold; color: {self.accent_color};")
header_layout.addWidget(self.title_label, 1)
# Status indicator
self.status_light = QLabel()
self.status_light.setFixedSize(20, 20)
self.status_light.setStyleSheet("background-color: red; border-radius: 10px;")
header_layout.addWidget(self.status_light)
self.connection_label = QLabel("Disconnected")
header_layout.addWidget(self.connection_label)
# Reconnect button
self.reconnect_btn = QPushButton("Reconnect")
self.reconnect_btn.clicked.connect(self.reconnect_device)
header_layout.addWidget(self.reconnect_btn)
self.main_layout.addWidget(header_frame)
# Measurement display
display_frame = QFrame()
display_frame.setFrameShape(QFrame.StyledPanel)
display_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}")
display_layout = QGridLayout(display_frame)
# Measurement values
measurement_labels = [
("Voltage", "V"), ("Current", "A"), ("Test Phase", ""),
("Elapsed Time", "s"), ("Capacity", "Ah"), ("Power", "W"),
("Energy", "Wh"), ("Cycle Count", ""), ("Battery Temp", "°C")
]
for i, (label, unit) in enumerate(measurement_labels):
row = i // 3
col = (i % 3) * 3
lbl = QLabel(f"{label}:")
lbl.setStyleSheet(f"color: {self.fg_color}; font-size: 11px;")
display_layout.addWidget(lbl, row, col)
value_lbl = QLabel("0.000")
value_lbl.setStyleSheet(f"""
color: {self.fg_color};
font-weight: bold;
font-size: 12px;
min-width: 60px;
""")
display_layout.addWidget(value_lbl, row, col + 1)
if unit:
unit_lbl = QLabel(unit)
unit_lbl.setStyleSheet(f"color: {self.fg_color}; font-size: 11px;")
display_layout.addWidget(unit_lbl, row, col + 2)
for i in range(9):
display_layout.setColumnStretch(i, 1 if i % 3 == 1 else 0)
self.voltage_label = display_layout.itemAtPosition(0, 1).widget()
self.current_label = display_layout.itemAtPosition(0, 4).widget()
self.phase_label = display_layout.itemAtPosition(0, 7).widget()
self.time_label = display_layout.itemAtPosition(1, 1).widget()
self.capacity_label = display_layout.itemAtPosition(1, 4).widget()
self.power_label = display_layout.itemAtPosition(1, 7).widget()
self.energy_label = display_layout.itemAtPosition(2, 1).widget()
self.cycle_label = display_layout.itemAtPosition(2, 4).widget()
self.temp_label = display_layout.itemAtPosition(2, 7).widget()
self.main_layout.addWidget(display_frame)
# Control area
controls_frame = QFrame()
controls_frame.setFrameShape(QFrame.NoFrame)
controls_layout = QHBoxLayout(controls_frame)
controls_layout.setContentsMargins(0, 0, 0, 0)
# Parameters frame
self.params_frame = QFrame()
self.params_frame.setFrameShape(QFrame.StyledPanel)
self.params_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}")
self.params_layout = QGridLayout(self.params_frame)
# Add parameter inputs
row = 0
# Battery Capacity
self.capacity_label = QLabel("Capacity (Ah):")
self.capacity_label.setStyleSheet(f"color: {self.fg_color};")
self.params_layout.addWidget(self.capacity_label, row, 0)
self.capacity_input = QLineEdit("1.0")
self.capacity_input.setValidator(QDoubleValidator(0.001, 100, 3))
self.params_layout.addWidget(self.capacity_input, row, 1)
row += 1
# C-Rate
self.c_rate_label = QLabel("C-Rate:")
self.c_rate_label.setStyleSheet(f"color: {self.fg_color};")
self.params_layout.addWidget(self.c_rate_label, row, 0)
self.c_rate_input = QLineEdit("0.1")
self.c_rate_input.setValidator(QDoubleValidator(0.01, 1, 2))
self.params_layout.addWidget(self.c_rate_input, row, 1)
row += 1
# Charge Cutoff Voltage
self.charge_cutoff_label = QLabel("Charge Cutoff (V):")
self.charge_cutoff_label.setStyleSheet(f"color: {self.fg_color};")
self.params_layout.addWidget(self.charge_cutoff_label, row, 0)
self.charge_cutoff_input = QLineEdit("1.43")
self.charge_cutoff_input.setValidator(QDoubleValidator(0.1, 5.0, 3))
self.params_layout.addWidget(self.charge_cutoff_input, row, 1)
row += 1
# Discharge Cutoff Voltage
self.discharge_cutoff_label = QLabel("Discharge Cutoff (V):")
self.discharge_cutoff_label.setStyleSheet(f"color: {self.fg_color};")
self.params_layout.addWidget(self.discharge_cutoff_label, row, 0)
self.discharge_cutoff_input = QLineEdit("0.01")
self.discharge_cutoff_input.setValidator(QDoubleValidator(0.1, 5.0, 3))
self.params_layout.addWidget(self.discharge_cutoff_input, row, 1)
row += 1
# Rest Time
self.rest_time_label = QLabel("Rest Time (h):")
self.rest_time_label.setStyleSheet(f"color: {self.fg_color};")
self.params_layout.addWidget(self.rest_time_label, row, 0)
self.rest_time_input = QLineEdit("0.5")
self.rest_time_input.setValidator(QDoubleValidator(0.1, 24, 1))
self.params_layout.addWidget(self.rest_time_input, row, 1)
row += 1
# Test Conditions
self.test_conditions_label = QLabel("Test Conditions:")
self.test_conditions_label.setStyleSheet(f"color: {self.fg_color};")
self.params_layout.addWidget(self.test_conditions_label, row, 0)
self.test_conditions_input = QLineEdit("Room Temperature")
self.params_layout.addWidget(self.test_conditions_input, row, 1)
controls_layout.addWidget(self.params_frame, 1)
# Button frame with single toggle button
button_frame = QFrame()
button_frame.setFrameShape(QFrame.NoFrame)
button_layout = QVBoxLayout(button_frame)
button_layout.setContentsMargins(0, 0, 0, 0)
# Single toggle button (Start/Stop)
self.toggle_button = QPushButton("START")
self.toggle_button.setCheckable(True)
self.toggle_button.setStyleSheet(f"""
QPushButton {{
background-color: {self.accent_color};
color: {self.fg_color};
font-weight: bold;
padding: 6px;
border-radius: 4px;
min-width: 80px;
}}
QPushButton:checked {{
background-color: {self.warning_color};
}}
QPushButton:pressed {{
background-color: {self.warning_color};
}}
QPushButton:disabled {{
background-color: #4C566A;
color: #D8DEE9;
}}
""")
self.toggle_button.clicked.connect(self.toggle_test)
button_layout.addWidget(self.toggle_button)
# Continuous mode checkbox (only for Cycle mode)
self.continuous_mode_check = QCheckBox("Continuous Mode")
self.continuous_mode_check.setChecked(True)
self.continuous_mode_check.setStyleSheet(f"color: {self.fg_color};")
button_layout.addWidget(self.continuous_mode_check)
self.continuous_mode_check.hide()
# Record button for Live mode
self.record_button = QPushButton("Start Recording")
self.record_button.setCheckable(True)
self.record_button.setStyleSheet(f"""
QPushButton {{
background-color: {self.success_color};
color: {self.fg_color};
font-weight: bold;
padding: 6px;
border-radius: 4px;
}}
QPushButton:checked {{
background-color: {self.warning_color};
}}
""")
self.record_button.clicked.connect(self.toggle_recording)
button_layout.addWidget(self.record_button)
self.record_button.hide()
controls_layout.addWidget(button_frame)
self.main_layout.addWidget(controls_frame)
# Plot area
self.setup_plot()
# Status bar
self.status_bar = self.statusBar()
self.status_bar.setStyleSheet(f"color: {self.fg_color};")
self.status_bar.showMessage("Ready")
# Apply dark theme
self.setStyleSheet(f"""
QMainWindow {{
background-color: {self.bg_color};
}}
QLabel {{
color: {self.fg_color};
}}
QLineEdit {{
background-color: #3B4252;
color: {self.fg_color};
border: 1px solid #4C566A;
border-radius: 3px;
padding: 2px;
}}
""")
def toggle_test(self):
"""Toggle between start and stop based on button state"""
if self.toggle_button.isChecked():
# Button shows "STOP" - run start logic
self.toggle_button.setText("STOP")
self.start_test()
else:
# Button shows "START" - run stop logic
self.toggle_button.setText("START")
self.stop_test()
def change_mode(self, mode_name):
"""Change between different test modes"""
self.current_mode = mode_name
self.stop_test() # Stop any current operation
# Show/hide mode-specific UI elements
show_charge = mode_name in ["Cycle Test", "Charge Test"]
show_discharge = mode_name in ["Cycle Test", "Discharge Test"]
show_rest = mode_name == "Cycle Test"
self.charge_cutoff_label.setVisible(show_charge)
self.charge_cutoff_input.setVisible(show_charge)
self.discharge_cutoff_label.setVisible(show_discharge)
self.discharge_cutoff_input.setVisible(show_discharge)
self.rest_time_label.setVisible(show_rest)
self.rest_time_input.setVisible(show_rest)
# Continuous mode checkbox only for cycle test
self.continuous_mode_check.setVisible(mode_name == "Cycle Test")
# Record button only for live monitoring
self.record_button.setVisible(mode_name == "Live Monitoring")
# Set button text based on mode
if mode_name == "Cycle Test":
self.toggle_button.setText("START CYCLE TEST")
elif mode_name == "Discharge Test":
self.toggle_button.setText("START DISCHARGE")
elif mode_name == "Charge Test":
self.toggle_button.setText("START CHARGE")
elif mode_name == "Live Monitoring":
self.toggle_button.setText("START")
self.toggle_button.hide()
# Reset button state
self.toggle_button.setChecked(False)
# Reset measurement state and zero the time
if self.active_device:
dev = self.active_device
dev.reset_data()
# Reset the measurement thread's start time
if hasattr(dev, 'measurement_thread'):
dev.measurement_thread.start_time = time.time()
# Reset UI displays
self.capacity_label.setText("0.0000")
self.energy_label.setText("0.0000")
self.cycle_label.setText("0")
self.phase_label.setText("Idle")
self.time_label.setText("00:00:00")
# Reset plot
self.reset_plot()
self.status_bar.showMessage(f"Mode changed to {mode_name}")
# Update recording button
if mode_name == "Live Monitoring":
self.record_button.setVisible(True)
if self.active_device and self.active_device.is_recording:
self.record_button.setChecked(True)
self.record_button.setText("Stop Recording")
else:
self.record_button.setChecked(False)
self.record_button.setText("Start Recording")
else:
self.record_button.setVisible(False)
def reset_test(self):
if not self.active_device:
return
dev_manager = self.active_device
dev_manager.reset_data() # Reset in DeviceManager
# UI zurücksetzen
self.capacity_label.setText("0.0000")
self.energy_label.setText("0.0000")
self.cycle_label.setText("0")
self.phase_label.setText("Idle")
def toggle_recording(self):
"""Toggle data recording in Live Monitoring mode"""
if not self.active_device:
return
dev = self.active_device
if not dev.is_recording: # Use device's recording state
try:
if self.create_cycle_log_file():
dev.is_recording = True # Set device's recording state
self.record_button.setText("Stop Recording")
self.status_bar.showMessage("Live recording started")
# Ensure monitoring is running
if not self.test_running:
self.start_live_monitoring()
else:
self.record_button.setChecked(False)
self.current_cycle_file = None
except Exception as e:
print(f"Error starting recording: {e}")
self.record_button.setChecked(False)
self.current_cycle_file = None
QMessageBox.critical(self, "Error", f"Failed to start recording:\n{str(e)}")
else:
# Stop recording
try:
if hasattr(self, 'current_cycle_file') and self.current_cycle_file:
self.finalize_log_file()
dev.is_recording = False # Clear device's recording state
self.record_button.setText("Start Recording")
self.status_bar.showMessage("Live recording stopped")
except Exception as e:
print(f"Error stopping recording: {e}")
def handle_continuous_mode_change(self, state):
"""Handle changes to continuous mode checkbox during operation"""
if not state and self.test_running: # If unchecked during test
self.status_bar.showMessage("Continuous mode disabled - will complete current cycle")
self.continuous_mode_check.setStyleSheet(f"color: {self.warning_color};")
QTimer.singleShot(2000, lambda: self.continuous_mode_check.setStyleSheet(f"color: {self.fg_color};"))
def setup_plot(self):
"""Configure the matplotlib plot"""
self.fig = Figure(figsize=(8, 5), dpi=100, facecolor=self.bg_color)
self.fig.subplots_adjust(left=0.1, right=0.88, top=0.9, bottom=0.15)
self.ax = self.fig.add_subplot(111)
self.ax.set_facecolor('#3B4252')
# Set initial voltage range
voltage_padding = 0.2
min_voltage = max(0, 0.9 - voltage_padding)
max_voltage = 1.43 + voltage_padding
self.ax.set_ylim(min_voltage, max_voltage)
# Voltage plot
self.line_voltage, = self.ax.plot([], [], color='#00BFFF', label='Voltage (V)', linewidth=2)
self.ax.set_ylabel("Voltage (V)", color='#00BFFF')
self.ax.tick_params(axis='y', labelcolor='#00BFFF')
# Current plot (right axis)
self.ax2 = self.ax.twinx()
current_padding = 0.05
test_current = 0.1 * 0.2 # Default values
max_current = test_current * 1.5
self.ax2.set_ylim(-max_current - current_padding, max_current + current_padding)
self.line_current, = self.ax2.plot([], [], 'r-', label='Current (A)', linewidth=2)
self.ax2.set_ylabel("Current (A)", color='r')
self.ax2.tick_params(axis='y', labelcolor='r')
self.ax.set_xlabel('Time (s)', color=self.fg_color)
self.ax.set_title('Battery Test', color=self.fg_color)
self.ax.tick_params(axis='x', colors=self.fg_color)
self.ax.grid(True, color='#4C566A')
# Position legends
self.ax.legend(loc='upper left', bbox_to_anchor=(0.01, 0.99))
self.ax2.legend(loc='upper right', bbox_to_anchor=(0.99, 0.99))
# Embed plot
self.canvas = FigureCanvas(self.fig)
self.canvas.setStyleSheet(f"background-color: {self.bg_color};")
self.main_layout.addWidget(self.canvas, 1)
def init_device(self):
"""Robust device initialization"""
try:
# Close existing session
if hasattr(self, 'session'):
try:
self.session.end()
except:
pass
# Create new session
self.session = Session(ignore_dataflow=True, queue_size=10000)
self.session.scan()
# Retry mechanism
retry_count = 0
while not self.session.devices and retry_count < 3:
self.handle_device_connection(False, f"Scanning... (Attempt {retry_count+1}/3)")
QApplication.processEvents()
time.sleep(1)
self.session.scan()
retry_count += 1
if not self.session.devices:
self.handle_device_connection(False, "No devices found")
return
self.session.start(0)
self.devices = {}
for dev in self.session.devices:
manager = DeviceManager(dev) # Should work now
manager.start_measurement(interval=self.interval)
self.devices[dev.serial] = manager
# Select first device
first_serial = next(iter(self.devices.keys()))
self.active_device = self.devices[first_serial]
# Update UI
self.device_combo.clear()
for serial in self.devices:
self.device_combo.addItem(serial)
self.device_combo.setCurrentText(first_serial)
self.session_active = True
self.handle_device_connection(True, f"Connected: {first_serial}")
self.toggle_button.setEnabled(True)
# Connect measurement signals
self.measurement_thread = self.active_device.measurement_thread
self.measurement_thread.update_signal.connect(self.update_measurements)
self.measurement_thread.error_signal.connect(self.handle_device_error)
except Exception as e:
self.handle_device_connection(False, f"Initialization failed: {str(e)}")
def handle_no_devices(self):
"""Handle case when no devices are found"""
self.session_active = False
self.active_device = None
self.status_bar.showMessage("No ADALM1000 devices found")
self.status_light.setStyleSheet("background-color: red; border-radius: 10px;")
self.toggle_button.setEnabled(False)
self.device_combo.clear()
# Show reconnect button
self.reconnect_btn.setEnabled(True)
self.reconnect_btn.setVisible(True)
def handle_device_connection(self, connected, message=None):
"""Update connection status with proper coloring"""
if connected:
status = "connected"
if not message:
message = "Connected"
else:
status = "error" if "fail" in message.lower() else "disconnected"
if not message:
message = "Disconnected"
color = self.status_colors.get(status, "orange")
self.connection_label.setText(message)
self.status_light.setStyleSheet(f"""
background-color: {color};
border-radius: 10px;
""")
QApplication.processEvents()
def check_connection(self):
"""Periodically verify device connection"""
if not hasattr(self, 'session') or not self.session.devices:
self.handle_device_error("Device disconnected")
self.reconnect_device()
def request_usb_permissions(self):
"""Handle USB permission issues with user interaction"""
msg = QMessageBox(self)
msg.setIcon(QMessageBox.Critical)
msg.setWindowTitle("USB Permission Required")
msg.setText("Permission needed to access ADALM1000 devices")
msg.setInformativeText(
"The application needs elevated privileges to access USB devices.\n\n"
"Please choose an option:"
)
# Add buttons
sudo_button = msg.addButton("Run as Administrator", QMessageBox.ActionRole)
udev_button = msg.addButton("Fix Permissions", QMessageBox.ActionRole)
cancel_button = msg.addButton(QMessageBox.Cancel)
msg.exec_()
if msg.clickedButton() == sudo_button:
# Restart with sudo
QMessageBox.information(self, "Restarting",
"The application will restart with administrator privileges")
args = sys.argv[:]
args.insert(0, sys.executable)
os.execvp("sudo", ["sudo"] + args)
elif msg.clickedButton() == udev_button:
# Create udev rule
rule_content = (
'# ADALM1000 USB permissions\n'
'SUBSYSTEM=="usb", ATTR{idVendor}=="064b", ATTR{idProduct}=="784c", MODE="0666"\n'
)
try:
# Try to create udev rule
rule_path = "/etc/udev/rules.d/52-adalm1000.rules"
with open(rule_path, "w") as f:
f.write(rule_content)
# Apply rules
os.system("sudo udevadm control --reload-rules")
os.system("sudo udevadm trigger")
QMessageBox.information(self, "Permissions Fixed",
"USB permissions configured. Please reconnect devices.")
except Exception as e:
QMessageBox.critical(self, "Error",
f"Failed to set permissions: {str(e)}\n\n"
"Please run these commands manually:\n\n"
f"echo '{rule_content}' | sudo tee {rule_path}\n"
"sudo udevadm control --reload-rules\n"
"sudo udevadm trigger")
def manual_device_init(self):
"""Manual device initialization workaround"""
try:
# Simulate device detection
self.device_combo.clear()
self.device_combo.addItem("ADALM1000-1 (Simulated)")
self.device_combo.addItem("ADALM1000-2 (Simulated)")
# Mock connection
self.status_light.setStyleSheet("background-color: orange; border-radius: 10px;")
self.connection_label.setText("Simulated Devices")
self.session_active = True
self.toggle_button.setEnabled(True)
QMessageBox.warning(self, "Simulation Mode",
"Using simulated devices - real hardware not detected")
except Exception as e:
print(f"Manual init failed: {e}")
def change_device(self, index):
if not self.session_active or index < 0:
return
serial = self.device_combo.itemText(index)
if serial not in self.devices:
return
# Stop current device
if self.active_device:
try:
# Disconnect signals safely
if hasattr(self.active_device, 'measurement_thread'):
thread = self.active_device.measurement_thread
try:
if thread.isRunning():
thread.stop()
thread.wait(500)
thread.update_signal.disconnect()
thread.error_signal.disconnect()
except (RuntimeError, TypeError) as e:
print(f"Signal disconnect warning: {e}")
except Exception as e:
print(f"Error stopping thread: {e}")
except Exception as e:
print(f"Error stopping previous device: {e}")
# Activate new device
self.active_device = self.devices[serial]
# Connect signals to new device
if hasattr(self.active_device, 'measurement_thread'):
try:
self.measurement_thread = self.active_device.measurement_thread
self.measurement_thread.update_signal.connect(self.update_measurements)
self.measurement_thread.error_signal.connect(self.handle_device_error)
# Start measurement only AFTER connecting signals
if not self.measurement_thread.isRunning():
self.active_device.start_measurement(self.interval)
except Exception as e:
print(f"Error connecting to new device: {e}")
return
# Update UI with current device data
self.update_ui_from_active_device()
self.status_bar.showMessage(f"Switched to device: {serial}")
# Update recording button state
if self.current_mode == "Live Monitoring":
self.record_button.setVisible(True)
if self.active_device.is_recording: # Check new device's state
self.record_button.setChecked(True)
self.record_button.setText("Stop Recording")
else:
self.record_button.setChecked(False)
self.record_button.setText("Start Recording")
else:
self.record_button.setVisible(False)
def update_ui_from_active_device(self):
dev = self.active_device
if not dev:
return
with self.plot_mutex:
# Kopiere aktuelle Daten
x = list(dev.display_time_data)
y_v = list(dev.display_voltage_data)
y_c = list(dev.display_current_data)
# Aktualisiere Plot
self.line_voltage.set_data(x, y_v)
self.line_current.set_data(x, y_c)
self.auto_scale_axes()
self.canvas.draw_idle()
# Aktualisiere Labels
if dev.voltage_data:
v = dev.voltage_data[-1]
i = dev.current_data[-1]
t = dev.time_data[-1] if dev.time_data else 0
self.voltage_label.setText(f"{v:.4f}")
self.current_label.setText(f"{abs(i):.4f}")
self.time_label.setText(self.format_time(t))
self.capacity_label.setText(f"{dev.capacity_ah:.4f}")
self.energy_label.setText(f"{dev.energy:.4f}")
self.cycle_label.setText(str(dev.cycle_count))
self.phase_label.setText(dev.test_phase)
@pyqtSlot(float, float, float)
def update_measurements(self, voltage, current, current_time):
if not self.active_device:
return
dev = self.active_device
# Add measurement validation
if not self.validate_measurements(voltage, current):
print(f"Invalid measurement: V={voltage:.4f}, I={current:.4f}")
return
with self.plot_mutex:
dev.time_data.append(current_time)
dev.voltage_data.append(voltage)
dev.current_data.append(current)
# Aggregation for display
agg_buf = dev.aggregation_buffer
agg_buf['time'].append(current_time)
agg_buf['voltage'].append(voltage)
agg_buf['current'].append(current)
agg_buf['count'] += 1
now = time.time()
if now - agg_buf['last_plot_time'] >= 0.1:
agg_time = np.mean(agg_buf['time'])
agg_voltage = np.mean(agg_buf['voltage'])
agg_current = np.mean(agg_buf['current'])
dev.display_time_data.append(agg_time)
dev.display_voltage_data.append(agg_voltage)
dev.display_current_data.append(agg_current)
dev.aggregation_buffer = {
'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': now
}
# Update UI labels
self.voltage_label.setText(f"{voltage:.4f}")
self.current_label.setText(f"{abs(current):.4f}")
self.time_label.setText(self.format_time(current_time))
# Calculate capacity if we have enough data points
if len(dev.time_data) > 1:
delta_t = dev.time_data[-1] - dev.time_data[-2]
power = voltage * abs(current)
dev.capacity_ah += abs(current) * delta_t / 3600
dev.energy += power * delta_t / 3600
self.capacity_label.setText(f"{dev.capacity_ah:.4f}")
self.energy_label.setText(f"{dev.energy:.4f}")
# Update plot periodically
now = time.time()
if not hasattr(self, '_last_plot_update'):
self._last_plot_update = 0
if now - self._last_plot_update >= 0.1:
self._last_plot_update = now
QTimer.singleShot(0, self.update_plot)
def adjust_downsampling(self):
current_length = len(self.time_data)
if current_length > self.max_points_to_keep * 1.5:
# Exponentiell erhöhen, aber max. 64
new_factor = min(64, max(1, self.downsample_factor * 2))
elif current_length < self.max_points_to_keep // 2:
# Halbieren, aber min. 1
new_factor = max(1, self.downsample_factor // 2)
else:
return
if new_factor != self.downsample_factor:
self.downsample_factor = new_factor
self.status_bar.showMessage(
f"Downsampling: Factor {self.downsample_factor}", 2000)
def update_status_and_plot(self):
"""Combined status and plot update"""
self.update_status()
self.update_plot()
def update_status(self):
"""Update status information periodically"""
now = time.time()
if not self.active_device:
return
dev = self.active_device
if self.test_running or (hasattr(self, 'record_button') and self.record_button.isChecked()):
if dev.time_data:
current_time = dev.time_data[-1]
if len(dev.time_data) > 1:
delta_t = dev.time_data[-1] - dev.time_data[-2]
if delta_t > 0:
current_current = abs(dev.current_data[-1])
dev.capacity_ah += current_current * delta_t / 3600
self.capacity_label.setText(f"{dev.capacity_ah:.4f}")
# Logging (1x per second)
if (hasattr(self, 'log_writer') and
hasattr(self, 'current_cycle_file') and
self.current_cycle_file is not None and
not self.current_cycle_file.closed):
if not hasattr(self, '_last_log_time'):
self._last_log_time = now
if dev.time_data and (now - self._last_log_time >= 1.0):
try:
current_time = dev.time_data[-1]
voltage = dev.voltage_data[-1]
current = dev.current_data[-1]
if self.current_mode == "Cycle Test":
self.log_writer.writerow([
f"{current_time:.4f}",
f"{voltage:.6f}",
f"{current:.6f}",
dev.test_phase,
f"{dev.capacity_ah:.4f}",
f"{dev.charge_capacity:.4f}",
f"{dev.coulomb_efficiency:.1f}",
f"{dev.cycle_count}"
])
else:
self.log_writer.writerow([
f"{current_time:.4f}",
f"{voltage:.6f}",
f"{current:.6f}",
dev.test_phase if hasattr(dev, 'test_phase') else "Live",
f"{dev.capacity_ah:.4f}",
f"{voltage * current:.4f}", # Power
f"{dev.energy:.4f}", # Energy
f"{dev.cycle_count}" if hasattr(dev, 'cycle_count') else "1"
])
self.current_cycle_file.flush()
self._last_log_time = now
except Exception as e:
print(f"Error writing to log file: {e}")
if hasattr(self, 'current_cycle_file') and self.current_cycle_file is not None:
try:
self.current_cycle_file.close()
except:
pass
self.record_button.setChecked(False)
self.current_cycle_file = None
def start_test(self):
"""Start the selected test mode using the active device"""
if not self.active_device:
QMessageBox.warning(self, "No Device", "No ADALM1000 device selected.")
self.toggle_button.setChecked(False)
return
dev_manager = self.active_device
dev = dev_manager.dev
# Clean up any previous test
self.cleanup_test_threads()
# Reset test state for active device
self.reset_test()
# Reset measurement thread timing
dev_manager.measurement_thread.start_time = time.time()
dev_manager.measurement_thread.voltage_window.clear()
dev_manager.measurement_thread.current_window.clear()
with dev_manager.measurement_thread.measurement_queue.mutex:
dev_manager.measurement_thread.measurement_queue.queue.clear()
# Reset data buffers
dev_manager.time_data.clear()
dev_manager.voltage_data.clear()
dev_manager.current_data.clear()
dev_manager.display_time_data.clear()
dev_manager.display_voltage_data.clear()
dev_manager.display_current_data.clear()
dev_manager.aggregation_buffer = {
'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0
}
# Reset device state
try:
dev.channels['A'].mode = pysmu.Mode.HI_Z
dev.channels['A'].constant(0)
dev.channels['B'].mode = pysmu.Mode.HI_Z
dev.channels['B'].constant(0)
except Exception as e:
QMessageBox.critical(self, "Device Error", f"Failed to reset device: {e}")
self.toggle_button.setChecked(False)
return
# Reset test variables
dev_manager.capacity_ah = 0.0
dev_manager.energy = 0.0
dev_manager.charge_capacity = 0.0
dev_manager.coulomb_efficiency = 0.0
dev_manager.cycle_count = 0
dev_manager.start_time = time.time()
dev_manager.test_phase = "Running"
# Set global state
self.test_running = True
self.request_stop = False
# Update UI
self.phase_label.setText(dev_manager.test_phase)
self.toggle_button.setText("STOP")
# Get parameters from UI
try:
self.capacity = float(self.capacity_input.text())
self.c_rate = float(self.c_rate_input.text())
test_current = self.c_rate * self.capacity
if test_current > 0.2:
raise ValueError("Current must be ≤ 200mA (0.2A) for ADALM1000")
except ValueError as e:
QMessageBox.critical(self, "Input Error", str(e))
self.stop_test()
return
# Create log file
if not self.create_cycle_log_file():
self.stop_test()
return
# Start the appropriate test
if self.current_mode == "Cycle Test":
try:
self.charge_cutoff = float(self.charge_cutoff_input.text())
self.discharge_cutoff = float(self.discharge_cutoff_input.text())
self.rest_time = float(self.rest_time_input.text())
if self.charge_cutoff <= self.discharge_cutoff:
raise ValueError("Charge cutoff must be higher than discharge cutoff")
# Start test sequence
self.test_sequence_thread = QThread()
self.test_sequence_worker = TestSequenceWorker(
dev,
test_current,
self.charge_cutoff,
self.discharge_cutoff,
self.rest_time,
self.continuous_mode_check.isChecked(),
self
)
self.test_sequence_worker.moveToThread(self.test_sequence_thread)
self.test_sequence_worker.update_phase.connect(self.update_test_phase)
self.test_sequence_worker.update_status.connect(self.status_bar.showMessage)
self.test_sequence_worker.test_completed.connect(self.finalize_test)
self.test_sequence_worker.error_occurred.connect(self.handle_test_error)
self.test_sequence_worker.finished.connect(self.test_sequence_thread.quit)
self.test_sequence_worker.finished.connect(self.test_sequence_worker.deleteLater)
self.test_sequence_thread.finished.connect(self.test_sequence_thread.deleteLater)
self.test_sequence_thread.start()
QTimer.singleShot(0, self.test_sequence_worker.run)
self.status_bar.showMessage(f"Cycle test started | Device: {dev.serial} | Current: {test_current:.4f}A")
except Exception as e:
QMessageBox.critical(self, "Error", str(e))
self.stop_test()
elif self.current_mode == "Discharge Test":
try:
self.discharge_cutoff = float(self.discharge_cutoff_input.text())
self.discharge_thread = QThread()
self.discharge_worker = DischargeWorker(dev, test_current, self.discharge_cutoff, self)
self.discharge_worker.moveToThread(self.discharge_thread)
self.discharge_worker.update_status.connect(self.status_bar.showMessage)
self.discharge_worker.test_completed.connect(self.finalize_test)
self.discharge_worker.error_occurred.connect(self.handle_test_error)
self.discharge_worker.finished.connect(self.discharge_thread.quit)
self.discharge_worker.finished.connect(self.discharge_worker.deleteLater)
self.discharge_thread.finished.connect(self.discharge_thread.deleteLater)
self.discharge_thread.start()
QTimer.singleShot(0, self.discharge_worker.run)
self.status_bar.showMessage(f"Discharge test started | Device: {dev.serial} | Current: {test_current:.4f}A")
except Exception as e:
QMessageBox.critical(self, "Error", str(e))
self.stop_test()
elif self.current_mode == "Charge Test":
try:
self.charge_cutoff = float(self.charge_cutoff_input.text())
self.charge_thread = QThread()
self.charge_worker = ChargeWorker(dev, test_current, self.charge_cutoff, self)
self.charge_worker.moveToThread(self.charge_thread)
self.charge_worker.update_status.connect(self.status_bar.showMessage)
self.charge_worker.test_completed.connect(self.finalize_test)
self.charge_worker.error_occurred.connect(self.handle_test_error)
self.charge_worker.finished.connect(self.charge_thread.quit)
self.charge_worker.finished.connect(self.charge_worker.deleteLater)
self.charge_thread.finished.connect(self.charge_thread.deleteLater)
self.charge_thread.start()
QTimer.singleShot(0, self.charge_worker.run)
self.status_bar.showMessage(f"Charge test started | Device: {dev.serial} | Current: {test_current:.4f}A")
except Exception as e:
QMessageBox.critical(self, "Error", str(e))
self.stop_test()
elif self.current_mode == "Live Monitoring":
self.start_live_monitoring()
def start_cycle_test(self):
"""Start the battery cycle test"""
# Clean up any previous test
if hasattr(self, 'test_sequence_worker'):
try:
self.test_sequence_worker.stop()
except:
pass
self.test_sequence_worker.deleteLater()
if hasattr(self, 'test_sequence_thread'):
self.test_sequence_thread.quit()
self.test_sequence_thread.wait()
self.test_sequence_thread.deleteLater()
del self.test_sequence_thread
self.reset_test()
self.reset_plot()
if hasattr(self, 'measurement_thread'):
self.measurement_thread.start_time = time.time()
# Reset stop flag
self.request_stop = False
if not self.test_running:
try:
# Get parameters from UI
self.capacity = float(self.capacity_input.text())
self.charge_cutoff = float(self.charge_cutoff_input.text())
self.discharge_cutoff = float(self.discharge_cutoff_input.text())
self.rest_time = float(self.rest_time_input.text())
self.c_rate = float(self.c_rate_input.text())
# Validate inputs
if self.capacity <= 0:
raise ValueError("Battery capacity must be positive")
if self.charge_cutoff <= self.discharge_cutoff:
raise ValueError("Charge cutoff must be higher than discharge cutoff")
if self.c_rate <= 0:
raise ValueError("C-rate must be positive")
test_current = self.c_rate * self.capacity
if test_current > 0.2:
raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000")
# Clear ALL previous data completely
with self.plot_mutex:
self.time_data.clear()
self.voltage_data.clear()
self.current_data.clear()
self.phase_data.clear()
# Reset capacities and timing
self.start_time = time.time()
self.last_update_time = self.start_time
self.capacity_ah = 0.0
self.charge_capacity = 0.0
self.coulomb_efficiency = 0.0
self.cycle_count = 0
self.energy = 0.0
# Reset measurement thread's timer and queues
if hasattr(self, 'measurement_thread'):
self.measurement_thread.start_time = time.time()
self.measurement_thread.voltage_window.clear()
self.measurement_thread.current_window.clear()
with self.measurement_thread.measurement_queue.mutex:
self.measurement_thread.measurement_queue.queue.clear()
# Reset plot completely
self.reset_plot()
# Start test
self.test_running = True
self.start_time = time.time()
self.last_update_time = time.time()
self.test_phase = "Initial Discharge"
self.phase_label.setText(self.test_phase)
self.toggle_button.setChecked(True)
self.toggle_button.setText("STOP")
self.status_bar.showMessage(f"Cycle test started | Current: {test_current:.4f}A")
# Create log file
self.create_cycle_log_file()
# Start test sequence in a QThread
self.test_sequence_thread = QThread()
self.test_sequence_worker = TestSequenceWorker(
self.active_device.dev,
test_current,
self.charge_cutoff,
self.discharge_cutoff,
self.rest_time,
self.continuous_mode_check.isChecked(),
self # Pass reference to main window for callbacks
)
self.test_sequence_worker.moveToThread(self.test_sequence_thread)
# Connect signals
self.test_sequence_worker.update_phase.connect(self.update_test_phase)
self.test_sequence_worker.update_status.connect(self.status_bar.showMessage)
self.test_sequence_worker.test_completed.connect(self.finalize_test)
self.test_sequence_worker.error_occurred.connect(self.handle_test_error)
self.test_sequence_worker.finished.connect(self.test_sequence_thread.quit)
self.test_sequence_worker.finished.connect(self.test_sequence_worker.deleteLater)
self.test_sequence_thread.finished.connect(self.test_sequence_thread.deleteLater)
# Start the thread and the worker's run method
self.test_sequence_thread.start()
QTimer.singleShot(0, self.test_sequence_worker.run)
except Exception as e:
QMessageBox.critical(self, "Error", str(e))
# Ensure buttons are in correct state if error occurs
self.toggle_button.setChecked(False)
self.toggle_button.setText("START")
self.toggle_button.setEnabled(True)
def start_discharge_test(self):
"""Start the battery discharge test"""
# Clean up any previous test
self.reset_test() # löscht time_data, voltage_data, current_data, display_*, phase_data
self.reset_plot()
if hasattr(self, 'measurement_thread'):
self.measurement_thread.start_time = time.time()
if hasattr(self, 'discharge_worker'):
try:
self.discharge_worker.stop()
except:
pass
self.discharge_worker.deleteLater()
if hasattr(self, 'discharge_thread'):
self.discharge_thread.quit()
self.discharge_thread.wait() # warte unbegrenzt, bis er wirklich fertig ist
self.discharge_thread.deleteLater()
del self.discharge_thread
# Reset stop flag
self.request_stop = False
if not self.test_running:
try:
# Get parameters from UI
self.capacity = float(self.capacity_input.text())
self.discharge_cutoff = float(self.discharge_cutoff_input.text())
self.c_rate = float(self.c_rate_input.text())
# Validate inputs
if self.capacity <= 0:
raise ValueError("Battery capacity must be positive")
if self.c_rate <= 0:
raise ValueError("C-rate must be positive")
test_current = self.c_rate * self.capacity
if test_current > 0.2:
raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000")
# Clear ALL previous data completely
with self.plot_mutex:
self.time_data.clear()
self.voltage_data.clear()
self.current_data.clear()
# Reset capacities and timing
self.start_time = time.time()
self.last_update_time = self.start_time
self.capacity_ah = 0.0
self.energy = 0.0
self.cycle_count = 1
# Reset measurement thread's timer and queues
if hasattr(self, 'measurement_thread'):
self.measurement_thread.start_time = time.time()
self.measurement_thread.voltage_window.clear()
self.measurement_thread.current_window.clear()
with self.measurement_thread.measurement_queue.mutex:
self.measurement_thread.measurement_queue.queue.clear()
# Reset plot completely
self.reset_plot()
# Start test
self.test_running = True
self.start_time = time.time()
self.last_update_time = time.time()
self.test_phase = "Discharge"
self.phase_label.setText(self.test_phase)
self.toggle_button.setChecked(True)
self.toggle_button.setText("STOP")
self.status_bar.showMessage(f"Discharge started | Current: {test_current:.4f}A")
# Create log file
self.create_cycle_log_file()
# Start discharge worker in a QThread
self.discharge_thread = QThread()
self.discharge_worker = DischargeWorker(
self.active_device.dev,
test_current,
self.discharge_cutoff,
self # Pass reference to main window for callbacks
)
self.discharge_worker.moveToThread(self.discharge_thread)
# Connect signals
self.discharge_worker.update_status.connect(self.status_bar.showMessage)
self.discharge_worker.test_completed.connect(self.finalize_test)
self.discharge_worker.error_occurred.connect(self.handle_test_error)
self.discharge_worker.finished.connect(self.discharge_thread.quit)
self.discharge_worker.finished.connect(self.discharge_worker.deleteLater)
self.discharge_thread.finished.connect(self.discharge_thread.deleteLater)
# Start the thread and the worker's run method
self.discharge_thread.start()
QTimer.singleShot(0, self.discharge_worker.run)
except Exception as e:
QMessageBox.critical(self, "Error", str(e))
# Ensure buttons are in correct state if error occurs
self.toggle_button.setChecked(False)
self.toggle_button.setText("START")
self.toggle_button.setEnabled(True)
def start_charge_test(self):
"""Start the battery charge test"""
# Clean up any previous test
if hasattr(self, 'charge_worker'):
try:
self.charge_worker.stop()
except:
pass
self.charge_worker.deleteLater()
if hasattr(self, 'charge_thread'):
self.charge_thread.quit()
self.charge_thread.wait()
self.charge_thread.deleteLater()
del self.charge_thread
self.reset_test()
self.reset_plot()
if hasattr(self, 'measurement_thread'):
self.measurement_thread.start_time = time.time()
# Reset stop flag
self.request_stop = False
if not self.test_running:
try:
# Get parameters from UI
self.capacity = float(self.capacity_input.text())
self.charge_cutoff = float(self.charge_cutoff_input.text())
self.c_rate = float(self.c_rate_input.text())
# Validate inputs
if self.capacity <= 0:
raise ValueError("Battery capacity must be positive")
if self.c_rate <= 0:
raise ValueError("C-rate must be positive")
test_current = self.c_rate * self.capacity
if test_current > 0.2:
raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000")
# Clear ALL previous data completely
with self.plot_mutex:
self.time_data.clear()
self.voltage_data.clear()
self.current_data.clear()
# Reset capacities and timing
self.start_time = time.time()
self.last_update_time = self.start_time
self.capacity_ah = 0.0
self.energy = 0.0
self.cycle_count = 1
# Reset measurement thread
if hasattr(self, 'measurement_thread'):
self.measurement_thread.start_time = time.time()
self.measurement_thread.voltage_window.clear()
self.measurement_thread.current_window.clear()
with self.measurement_thread.measurement_queue.mutex:
self.measurement_thread.measurement_queue.queue.clear()
# Reset plot
self.reset_plot()
# Start test
self.test_running = True
self.start_time = time.time()
self.last_update_time = time.time()
self.test_phase = "Charge"
self.phase_label.setText(self.test_phase)
self.toggle_button.setChecked(True)
self.toggle_button.setText("STOP")
self.status_bar.showMessage(f"Charge started @ {test_current:.3f}A to {self.charge_cutoff}V")
# Create log file
self.create_cycle_log_file()
# Start charge worker in a QThread
self.charge_thread = QThread()
self.charge_worker = ChargeWorker(
self.active_device.dev,
test_current,
self.charge_cutoff,
self
)
self.charge_worker.moveToThread(self.charge_thread)
# Connect signals
self.charge_worker.update_status.connect(self.status_bar.showMessage)
self.charge_worker.test_completed.connect(self.finalize_test)
self.charge_worker.error_occurred.connect(self.handle_test_error)
self.charge_worker.finished.connect(self.charge_thread.quit)
self.charge_worker.finished.connect(self.charge_worker.deleteLater)
self.charge_thread.finished.connect(self.charge_thread.deleteLater)
# Start the thread
self.charge_thread.start()
QTimer.singleShot(0, self.charge_worker.run)
except Exception as e:
QMessageBox.critical(self, "Error", str(e))
self.toggle_button.setChecked(False)
self.toggle_button.setText("START")
self.toggle_button.setEnabled(True)
def start_live_monitoring(self):
"""Start live monitoring mode for the active device"""
if not self.active_device:
QMessageBox.warning(self, "No Device", "No ADALM1000 selected.")
return
dev_manager = self.active_device
dev = dev_manager.dev
try:
# Reset test state for active device
self.reset_test()
# Reset measurement thread timing
if hasattr(dev_manager, 'measurement_thread'):
dev_manager.measurement_thread.start_time = time.time()
dev_manager.measurement_thread.voltage_window.clear()
dev_manager.measurement_thread.current_window.clear()
with dev_manager.measurement_thread.measurement_queue.mutex:
dev_manager.measurement_thread.measurement_queue.queue.clear()
# Reset device state
dev.channels['A'].mode = pysmu.Mode.HI_Z
dev.channels['A'].constant(0)
dev.channels['B'].mode = pysmu.Mode.HI_Z
dev.channels['B'].constant(0)
# Reset UI
self.test_running = True
dev_manager.test_phase = "Live Monitoring"
self.phase_label.setText(dev_manager.test_phase)
# Status
self.status_bar.showMessage(f"Live monitoring started | Device: {dev.serial}")
except Exception as e:
self.handle_device_error(f"Failed to start live monitoring: {str(e)}")
def create_cycle_log_file(self):
"""Create a new log file for the current test with device serial in filename"""
try:
self._last_log_time = time.time()
# Schließe vorherige Datei
if hasattr(self, 'current_cycle_file') and self.current_cycle_file:
try:
self.current_cycle_file.close()
except Exception as e:
print(f"Error closing previous log file: {e}")
self.current_cycle_file = None
# Stelle sicher, dass Log-Ordner existiert
os.makedirs(self.log_dir, exist_ok=True)
if not os.access(self.log_dir, os.W_OK):
QMessageBox.critical(self, "Error", f"No write permissions in {self.log_dir}")
return False
# Generiere Timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
device_serial = self.active_device.serial[-2:] if self.active_device else "xx"
# Generiere Dateinamen mit Seriennummer
if self.current_mode == "Cycle Test":
self.filename = os.path.join(self.log_dir, f"battery_cycle_{timestamp}_{device_serial}.csv")
elif self.current_mode == "Discharge Test":
self.filename = os.path.join(self.log_dir, f"battery_discharge_{timestamp}_{device_serial}.csv")
else: # Live Monitoring
self.filename = os.path.join(self.log_dir, f"battery_live_{timestamp}_{device_serial}.csv")
# Öffne neue Datei
try:
self.current_cycle_file = open(self.filename, 'w', newline='')
test_current = self.c_rate * self.capacity
test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A"
# Schreibe Header
self.current_cycle_file.write(f"# ADALM1000 Battery Test Log - {self.current_mode}\n")
self.current_cycle_file.write(f"# Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
self.current_cycle_file.write(f"# Device Serial: {device_serial}\n")
self.current_cycle_file.write(f"# Battery Capacity: {self.capacity} Ah\n")
if self.current_mode != "Live Monitoring":
self.current_cycle_file.write(f"# Test Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n")
if self.current_mode == "Cycle Test":
self.current_cycle_file.write(f"# Charge Cutoff: {self.charge_cutoff} V\n")
self.current_cycle_file.write(f"# Discharge Cutoff: {self.discharge_cutoff} V\n")
self.current_cycle_file.write(f"# Rest Time: {self.rest_time} hours\n")
elif self.current_mode == "Discharge Test":
self.current_cycle_file.write(f"# Discharge Cutoff: {self.discharge_cutoff} V\n")
self.current_cycle_file.write(f"# Test Conditions/Chemistry: {test_conditions}\n")
self.current_cycle_file.write("#\n")
# CSV Writer
self.log_writer = csv.writer(self.current_cycle_file)
if self.current_mode == "Cycle Test":
self.log_writer.writerow([
"Time(s)", "Voltage(V)", "Current(A)", "Phase",
"Discharge_Capacity(Ah)", "Charge_Capacity(Ah)",
"Coulomb_Eff(%)", "Cycle"
])
else:
self.log_writer.writerow([
"Time(s)", "Voltage(V)", "Current(A)", "Phase",
"Capacity(Ah)", "Power(W)", "Energy(Wh)", "Cycle"
])
return True
except Exception as e:
QMessageBox.critical(self, "Error", f"Failed to create log file: {e}")
return False
except Exception as e:
print(f"Error in create_cycle_log_file: {e}")
return False
def finalize_log_file(self):
"""Finalize the current log file"""
if hasattr(self, 'current_cycle_file') and self.current_cycle_file:
try:
test_current = getattr(self, 'c_rate', 0) * getattr(self, 'capacity', 0)
test_conditions = getattr(self, 'test_conditions_input', lambda: "N/A").text()
self.current_cycle_file.write("\n# TEST SUMMARY\n")
self.current_cycle_file.write(f"# Test Parameters:\n")
self.current_cycle_file.write(f"# - Battery Capacity: {getattr(self, 'capacity', 'N/A')} Ah\n")
if getattr(self, 'current_mode', 'Live Monitoring') != "Live Monitoring":
self.current_cycle_file.write(f"# - Test Current: {test_current:.4f} A (C/{1/getattr(self, 'c_rate', 1):.1f})\n")
if getattr(self, 'current_mode', '') == "Cycle Test":
self.current_cycle_file.write(f"# - Charge Cutoff: {getattr(self, 'charge_cutoff', 'N/A')} V\n")
self.current_cycle_file.write(f"# - Discharge Cutoff: {getattr(self, 'discharge_cutoff', 'N/A')} V\n")
self.current_cycle_file.write(f"# - Rest Time: {getattr(self, 'rest_time', 'N/A')} hours\n")
elif getattr(self, 'current_mode', '') == "Discharge Test":
self.current_cycle_file.write(f"# - Discharge Cutoff: {getattr(self, 'discharge_cutoff', 'N/A')} V\n")
self.current_cycle_file.write(f"# - Test Conditions: {test_conditions}\n")
self.current_cycle_file.write(f"# Results:\n")
if getattr(self, 'current_mode', '') == "Cycle Test":
self.current_cycle_file.write(f"# - Cycles Completed: {getattr(self, 'cycle_count', 0)}\n")
self.current_cycle_file.write(f"# - Final Discharge Capacity: {getattr(self, 'capacity_ah', 0):.4f} Ah\n")
self.current_cycle_file.write(f"# - Final Charge Capacity: {getattr(self, 'charge_capacity', 0):.4f} Ah\n")
self.current_cycle_file.write(f"# - Coulombic Efficiency: {getattr(self, 'coulomb_efficiency', 0):.1f}%\n")
else:
self.current_cycle_file.write(f"# - Capacity: {getattr(self, 'capacity_ah', 0):.4f} Ah\n")
self.current_cycle_file.write(f"# - Energy: {getattr(self, 'energy', 0):.4f} Wh\n")
self.current_cycle_file.close()
except Exception as e:
print(f"Error closing log file: {e}")
finally:
self.current_cycle_file = None
def format_time(self, seconds):
"""Convert seconds to hh:mm:ss format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
def stop_test(self):
"""Request immediate stop with proper visual feedback"""
# Immediate red button feedback
self.toggle_button.setStyleSheet(f"""
QPushButton {{
background-color: {self.status_colors["warning"]};
color: white;
font-weight: bold;
}}
""")
QApplication.processEvents()
if not self.test_running:
self.reset_button_state()
return
try:
# Stop operations
self.request_stop = True
self.test_running = False
self.measuring = False
# Stop workers
workers = ['test_sequence_worker', 'discharge_worker', 'charge_worker']
for worker in workers:
if hasattr(self, worker):
getattr(self, worker).stop()
# Reset device
if self.active_device:
self.active_device.dev.channels['A'].mode = pysmu.Mode.HI_Z
self.active_device.dev.channels['A'].constant(0)
self.handle_device_connection(True) # Confirm connection
except Exception as e:
self.handle_device_connection(False, e)
finally:
# Clean up
self.reset_test_data()
self.reset_plot()
self.reset_button_state()
if hasattr(self, 'current_cycle_file'):
self.finalize_log_file()
self.status_bar.showMessage("Test stopped")
def set_connection_status(self, text, color=None):
"""Update connection status with optional color"""
if color is None:
if "error" in text.lower():
color = self.status_colors["error"]
elif "disconnect" in text.lower():
color = self.status_colors["disconnected"]
else:
color = self.status_colors["connected"]
self.connection_label.setText(text)
self.status_light.setStyleSheet(f"""
background-color: {color};
border-radius: 10px;
min-width: 12px;
max-width: 12px;
min-height: 12px;
max-height: 12px;
""")
QApplication.processEvents()
def reset_button_state(self):
"""Reset button to appropriate default state"""
mode = getattr(self, 'current_mode', 'Live Monitoring')
text = {
'Cycle Test': "START CYCLE TEST",
'Discharge Test': "START DISCHARGE",
'Charge Test': "START CHARGE"
}.get(mode, "START")
self.toggle_button.setChecked(False)
self.toggle_button.setText(text)
self.toggle_button.setStyleSheet(f"""
QPushButton {{
background-color: {self.status_colors["active"]};
color: {self.fg_color};
font-weight: bold;
}}
QPushButton:checked {{
background-color: {self.status_colors["warning"]};
}}
QPushButton:disabled {{
background-color: #4C566A;
}}
""")
def reset_button_style(self):
"""Reset button to default style"""
mode = getattr(self, 'current_mode', 'Live Monitoring')
text = {
'Cycle Test': "START CYCLE TEST",
'Discharge Test': "START DISCHARGE",
'Charge Test': "START CHARGE",
}.get(mode, "START")
self.toggle_button.setText(text)
self.toggle_button.setStyleSheet(f"""
QPushButton {{
background-color: {self.accent_color};
color: {self.fg_color};
font-weight: bold;
}}
QPushButton:checked {{
background-color: {self.warning_color};
}}
""")
def reset_test_data(self):
"""Completely reset all test data"""
if not self.active_device:
return
dev = self.active_device
# Clear all data buffers
dev.time_data.clear()
dev.voltage_data.clear()
dev.current_data.clear()
dev.display_time_data.clear()
dev.display_voltage_data.clear()
dev.display_current_data.clear()
# Reset statistics
dev.capacity_ah = 0.0
dev.energy = 0.0
dev.charge_capacity = 0.0
dev.coulomb_efficiency = 0.0
dev.test_phase = "Idle"
# Reset UI displays
self.voltage_label.setText("0.000")
self.current_label.setText("0.000")
self.time_label.setText("00:00:00")
self.capacity_label.setText("0.0000")
self.energy_label.setText("0.0000")
self.phase_label.setText("Idle")
def finalize_test(self):
"""Final cleanup after test completes or is stopped"""
try:
# 1. Stop any active measurement or test operations
self.measuring = False
self.test_running = False
# 2. Reset device to safe state
try:
self.active_device.dev.channels['A'].mode = pysmu.Mode.HI_Z
self.active_device.dev.channels['A'].constant(0)
self.active_device.dev.channels['B'].mode = pysmu.Mode.HI_Z
self.active_device.dev.channels['B'].constant(0)
except Exception as e:
print(f"Error resetting device in finalize: {e}")
# 3. Clean up test sequence thread safely
if hasattr(self, 'test_sequence_thread'):
try:
if self.test_sequence_thread.isRunning():
if hasattr(self, 'test_sequence_worker'):
try:
self.test_sequence_worker.stop()
except RuntimeError:
pass
self.test_sequence_thread.quit()
self.test_sequence_thread.wait(500)
except Exception as e:
print(f"Error stopping test sequence thread: {e}")
finally:
if hasattr(self, 'test_sequence_worker'):
try:
if not sip.isdeleted(self.test_sequence_worker):
self.test_sequence_worker.deleteLater()
except:
pass
if hasattr(self, 'test_sequence_thread'):
try:
if not sip.isdeleted(self.test_sequence_thread):
self.test_sequence_thread.deleteLater()
except:
pass
finally:
if hasattr(self, 'test_sequence_thread'):
del self.test_sequence_thread
# 4. Clean up discharge thread safely
if hasattr(self, 'discharge_thread'):
try:
if self.discharge_thread.isRunning():
if hasattr(self, 'discharge_worker'):
try:
self.discharge_worker.stop()
except RuntimeError:
pass
self.discharge_thread.quit()
self.discharge_thread.wait(500)
except Exception as e:
print(f"Error stopping discharge thread: {e}")
finally:
if hasattr(self, 'discharge_worker'):
try:
if not sip.isdeleted(self.discharge_worker):
self.discharge_worker.deleteLater()
except:
pass
if hasattr(self, 'discharge_thread'):
try:
if not sip.isdeleted(self.discharge_thread):
self.discharge_thread.deleteLater()
except:
pass
finally:
if hasattr(self, 'discharge_thread'):
del self.discharge_thread
# 5. Clean up charge thread safely (using same pattern as discharge thread)
if hasattr(self, 'charge_thread'):
try:
if self.charge_thread.isRunning():
if hasattr(self, 'charge_worker'):
try:
self.charge_worker.stop()
except RuntimeError:
pass
self.charge_thread.quit()
self.charge_thread.wait(500)
except Exception as e:
print(f"Error stopping charge thread: {e}")
finally:
if hasattr(self, 'charge_worker'):
try:
if not sip.isdeleted(self.charge_worker):
self.charge_worker.deleteLater()
except:
pass
if hasattr(self, 'charge_thread'):
try:
if not sip.isdeleted(self.charge_thread):
self.charge_thread.deleteLater()
except:
pass
finally:
if hasattr(self, 'charge_thread'):
del self.charge_thread
# 6. Finalize log file
self.finalize_log_file()
# 7. Reset UI and state
self.request_stop = False
self.toggle_button.setChecked(False)
self.toggle_button.setText("START")
self.toggle_button.setEnabled(True)
# 8. Show completion message if test wasn't stopped by user
if not self.request_stop:
test_current = self.c_rate * self.capacity
test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A"
if self.current_mode == "Cycle Test":
message = (
f"Cycle test completed | "
f"Cycle {self.cycle_count} | "
f"Capacity: {self.capacity_ah:.4f}Ah | "
f"Efficiency: {self.coulomb_efficiency:.1f}%"
)
QMessageBox.information(
self,
"Test Completed",
f"Cycle test completed successfully.\n\n"
f"Test Parameters:\n"
f"- Capacity: {self.capacity} Ah\n"
f"- Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n"
f"- Charge Cutoff: {self.charge_cutoff} V\n"
f"- Discharge Cutoff: {self.discharge_cutoff} V\n"
f"- Conditions: {test_conditions}\n\n"
f"Results:\n"
f"- Cycles: {self.cycle_count}\n"
f"- Discharge capacity: {self.capacity_ah:.4f}Ah\n"
f"- Coulombic efficiency: {self.coulomb_efficiency:.1f}%"
)
elif self.current_mode == "Discharge Test":
message = (
f"Discharge completed | "
f"Capacity: {self.capacity_ah:.4f}Ah | "
f"Energy: {self.energy:.4f}Wh"
)
QMessageBox.information(
self,
"Discharge Completed",
f"Discharge test completed successfully.\n\n"
f"Test Parameters:\n"
f"- Capacity: {self.capacity} Ah\n"
f"- Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n"
f"- Discharge Cutoff: {self.discharge_cutoff} V\n"
f"- Conditions: {test_conditions}\n\n"
f"Results:\n"
f"- Discharge capacity: {self.capacity_ah:.4f}Ah\n"
f"- Energy delivered: {self.energy:.4f}Wh"
)
self.status_bar.showMessage(message)
except Exception as e:
print(f"Error in finalize_test: {e}")
import traceback
traceback.print_exc()
# Ensure we don't leave the UI in a locked state
self.toggle_button.setChecked(False)
self.toggle_button.setText("START")
self.toggle_button.setEnabled(True)
self.status_bar.showMessage("Error during test finalization")
def reset_plot(self):
"""Completely reset the plot to initial state"""
# Clear plot data
self.line_voltage.set_data([], [])
self.line_current.set_data([], [])
# Reset axes
self.ax.set_xlim(0, 10)
self.ax.set_ylim(0, 5.0) # Full voltage range
self.ax2.set_ylim(-0.25, 0.25) # Full current range
# Redraw with slight delay to ensure UI updates
QTimer.singleShot(50, self.canvas.draw_idle)
def update_status_and_plot(self):
"""Combined status and plot update"""
self.update_status()
self.update_plot()
def update_plot(self):
"""Fixed plot method with safe attribute access"""
try:
if not self.active_device:
return
# Create local copies of data safely
with self.plot_mutex:
dev = self.active_device
if not dev.display_time_data:
return
x_data = list(dev.display_time_data)
y1_data = list(dev.display_voltage_data)
y2_data = list(dev.display_current_data)
# Update plot data
self.line_voltage.set_data(x_data, y1_data)
self.line_current.set_data(x_data, y2_data)
# Auto-scale when needed
if len(x_data) > 1:
self.auto_scale_axes()
# Force redraw
self.canvas.draw_idle()
except Exception as e:
print(f"Plot error: {e}")
# Attempt to recover
try:
self.reset_plot()
except:
pass
def auto_scale_axes(self):
"""Auto-scale plot axes with appropriate padding and strict boundaries"""
if not self.active_device or not self.active_device.time_data:
return
dev = self.active_device
min_time = 0
max_time = dev.time_data[-1]
current_xlim = self.ax.get_xlim()
if max_time > current_xlim[1] * 0.95:
new_max = max_time * 1.05
self.ax.set_xlim(min_time, new_max)
self.ax2.set_xlim(min_time, new_max)
voltage_padding = 0.2
if dev.voltage_data:
min_voltage = max(0, min(dev.voltage_data) - voltage_padding)
max_voltage = min(5.0, max(dev.voltage_data) + voltage_padding)
current_ylim = self.ax.get_ylim()
if (abs(current_ylim[0] - min_voltage) > 0.1 or abs(current_ylim[1] - max_voltage) > 0.1):
self.ax.set_ylim(min_voltage, max_voltage)
current_padding = 0.05
if dev.current_data:
min_current = max(-0.25, min(dev.current_data) - current_padding)
max_current = min(0.25, max(dev.current_data) + current_padding)
current_ylim2 = self.ax2.get_ylim()
if (abs(current_ylim2[0] - min_current) > 0.02 or abs(current_ylim2[1] - max_current) > 0.02):
self.ax2.set_ylim(min_current, max_current)
@pyqtSlot(str)
def handle_device_error(self, error_msg):
"""Handle device errors with proper connection status"""
self.handle_device_connection(False, f"Error: {error_msg}")
self.reconnect_btn.setVisible(True)
self.reconnect_btn.setEnabled(True)
self.toggle_button.setEnabled(False)
def validate_measurements(self, voltage, current):
"""Filter out invalid measurements"""
# Fix negative values caused by connection issues
if voltage < 0 or not (0 <= voltage <= 5.0):
return False
if abs(current) > 0.3: # Beyond ADALM1000's ±200mA range
return False
return True
@pyqtSlot(str)
def update_test_phase(self, phase_text):
"""Update the test phase display"""
self.test_phase = phase_text
self.phase_label.setText(phase_text)
@pyqtSlot(str)
def handle_test_error(self, error_msg):
"""Handle errors from the test sequence with complete cleanup"""
try:
# 1. Notify user
QMessageBox.critical(self, "Test Error",
f"An error occurred:\n{error_msg}\n\nAttempting to recover...")
# 2. Stop all operations
self.stop_test()
# 3. Reset UI elements
if hasattr(self, 'line_voltage'):
try:
self.line_voltage.set_data([], [])
self.line_current.set_data([], [])
self.ax.set_xlim(0, 1)
self.ax2.set_xlim(0, 1)
self.canvas.draw()
except Exception as plot_error:
print(f"Plot reset error: {plot_error}")
# 4. Update status
self.status_bar.showMessage(f"Error: {error_msg} - Reconnecting...")
self.status_light.setStyleSheet("background-color: orange; border-radius: 10px;")
# 5. Attempt recovery
QTimer.singleShot(1000, self.attempt_reconnect) # Delay before reconnect
except Exception as e:
print(f"Error in error handler: {e}")
# Fallback - restart application?
QMessageBox.critical(self, "Fatal Error",
"The application needs to restart due to an unrecoverable error")
QTimer.singleShot(1000, self.close)
def attempt_reconnect(self):
"""Attempt to reconnect automatically"""
QMessageBox.critical(
self,
"Device Connection Error",
"Could not connect to ADALM1000\n\n"
"1. Check USB cable connection\n"
"2. The device will attempt to reconnect automatically"
)
QTimer.singleShot(1000, self.reconnect_device)
def cleanup_test_threads(self):
"""Clean up any existing test threads before starting a new test"""
# Stop and clean up test sequence thread if it exists
if hasattr(self, 'test_sequence_thread'):
try:
if hasattr(self, 'test_sequence_worker'):
self.test_sequence_worker.stop()
self.test_sequence_thread.quit()
self.test_sequence_thread.wait(500)
except Exception as e:
print(f"Error cleaning up test sequence thread: {e}")
finally:
if hasattr(self, 'test_sequence_worker'):
try:
self.test_sequence_worker.deleteLater()
except:
pass
if hasattr(self, 'test_sequence_thread'):
try:
self.test_sequence_thread.deleteLater()
except:
pass
# Stop and clean up discharge thread if it exists
if hasattr(self, 'discharge_thread'):
try:
if hasattr(self, 'discharge_worker'):
self.discharge_worker.stop()
self.discharge_thread.quit()
self.discharge_thread.wait(500)
except Exception as e:
print(f"Error cleaning up discharge thread: {e}")
finally:
if hasattr(self, 'discharge_worker'):
try:
self.discharge_worker.deleteLater()
except:
pass
if hasattr(self, 'discharge_thread'):
try:
self.discharge_thread.deleteLater()
except:
pass
# Stop and clean up charge thread if it exists
if hasattr(self, 'charge_thread'):
try:
if hasattr(self, 'charge_worker'):
self.charge_worker.stop()
self.charge_thread.quit()
self.charge_thread.wait(500)
except Exception as e:
print(f"Error cleaning up charge thread: {e}")
finally:
if hasattr(self, 'charge_worker'):
try:
self.charge_worker.deleteLater()
except:
pass
if hasattr(self, 'charge_thread'):
try:
self.charge_thread.deleteLater()
except:
pass
def reconnect_device(self):
"""Comprehensive device reconnection handler"""
try:
self.handle_device_connection(False, "Reconnecting...")
# 1. Clean up existing connections
if hasattr(self, 'measurement_thread') and self.measurement_thread:
try:
self.measurement_thread.stop()
if not self.measurement_thread.wait(500):
self.measurement_thread.terminate()
except Exception as e:
print(f"Error stopping measurement thread: {e}")
if hasattr(self, 'session') and self.session:
try:
self.session.end()
except Exception as e:
print(f"Error ending session: {e}")
# 2. Initialize new session
self.session = pysmu.Session(ignore_dataflow=True, queue_size=10000)
self.session.scan()
if not self.session.devices:
self.handle_device_connection(False, "No devices detected")
return
self.session.start(0)
# 3. Re-establish device connection
if hasattr(self, 'active_device') and self.active_device:
# Try to find the same device by serial
target_serial = self.active_device.serial
for dev in self.session.devices:
if dev.serial == target_serial:
# Recreate the DeviceManager
self.active_device = DeviceManager(dev)
self.devices[target_serial] = self.active_device
break
else:
# No previous device, just use first available
dev = self.session.devices[0]
self.active_device = DeviceManager(dev)
self.devices[dev.serial] = self.active_device
# 4. Restart measurement system
self.active_device.start_measurement(self.interval)
# Reconnect signals
self.measurement_thread = self.active_device.measurement_thread
self.measurement_thread.update_signal.connect(self.update_measurements)
self.measurement_thread.error_signal.connect(self.handle_device_error)
# 5. Update UI
self.handle_device_connection(True, f"Reconnected: {self.active_device.serial}")
self.toggle_button.setEnabled(True)
# Update device dropdown
self.device_combo.clear()
for serial in self.devices:
self.device_combo.addItem(serial)
self.device_combo.setCurrentText(self.active_device.serial)
except Exception as e:
self.handle_device_connection(False, f"Reconnect failed: {str(e)}")
if __name__ == "__main__":
app = QApplication([])
try:
window = BatteryTester()
window.show()
app.exec_()
except Exception as e:
import traceback
traceback.print_exc()
QMessageBox.critical(None, "Fatal Error", f"Application failed: {str(e)}")