Adalm1000_Battery_SMU/MainCode/adalm1000_logger.py

777 lines
32 KiB
Python

# -*- coding: utf-8 -*-
import os
import time
import csv
import threading
from datetime import datetime
import tkinter as tk
from tkinter import ttk, messagebox
import pysmu
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from collections import deque
class DeviceDisconnectedError(Exception):
pass
class BatteryTester:
def __init__(self, root):
# Color scheme
self.bg_color = "#2E3440"
self.fg_color = "#D8DEE9"
self.accent_color = "#5E81AC"
self.warning_color = "#BF616A"
self.success_color = "#A3BE8C"
# Main window configuration
self.root = root
self.root.title("ADALM1000 - Battery Capacity Tester (CC Test)")
self.root.geometry("1000x800")
self.root.minsize(800, 700)
self.root.configure(bg=self.bg_color)
# Device and measurement state
self.session_active = False
self.measuring = False
self.test_running = False
self.interval = 0.1 # Measurement interval
self.log_dir = os.path.expanduser("~/adalm1000/logs")
os.makedirs(self.log_dir, exist_ok=True)
# Battery test parameters
self.capacity = tk.DoubleVar(value=0.2) # Battery capacity in Ah
self.charge_cutoff = tk.DoubleVar(value=1.45) # Charge cutoff voltage
self.discharge_cutoff = tk.DoubleVar(value=0.9) # Discharge cutoff voltage
self.rest_time = tk.DoubleVar(value=0.1) # Rest time in hours
self.c_rate = tk.DoubleVar(value=0.1) # C-rate for test (default C/5 = 0.2)
# Test progress tracking
self.test_phase = tk.StringVar(value="Idle")
self.capacity_ah = tk.DoubleVar(value=0.0)
self.charge_capacity = tk.DoubleVar(value=0.0) # Added for charge capacity tracking
self.coulomb_efficiency = tk.DoubleVar(value=0.0) # Added for efficiency calculation
# Data buffers
self.time_data = deque()
self.voltage_data = deque()
self.current_data = deque()
self.phase_data = deque()
# Initialize UI and device
self.setup_ui()
self.init_device()
# Ensure proper cleanup
self.root.protocol("WM_DELETE_WINDOW", self.on_close)
def setup_ui(self):
"""Configure the user interface"""
self.style = ttk.Style()
self.style.theme_use('clam')
# Configure styles
self.style.configure('.', background=self.bg_color, foreground=self.fg_color)
self.style.configure('TFrame', background=self.bg_color)
self.style.configure('TLabel', background=self.bg_color, foreground=self.fg_color)
self.style.configure('TButton', background=self.accent_color, foreground=self.fg_color,
padding=6, font=('Helvetica', 10, 'bold'))
self.style.map('TButton',
background=[('active', self.accent_color), ('disabled', '#4C566A')],
foreground=[('active', self.fg_color), ('disabled', '#D8DEE9')])
self.style.configure('TEntry', fieldbackground="#3B4252", foreground=self.fg_color)
self.style.configure('Header.TLabel', font=('Helvetica', 14, 'bold'), foreground=self.accent_color)
self.style.configure('Value.TLabel', font=('Helvetica', 12, 'bold'))
self.style.configure('Status.TLabel', font=('Helvetica', 10))
self.style.configure('Warning.TButton', background=self.warning_color)
self.style.configure('Success.TButton', background=self.success_color)
# Main layout
self.content_frame = ttk.Frame(self.root)
self.content_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# Header area
header_frame = ttk.Frame(self.content_frame)
header_frame.pack(fill=tk.X, pady=(0, 20))
ttk.Label(header_frame, text="ADALM1000 Battery Capacity Tester (CC Test)", style='Header.TLabel').pack(side=tk.LEFT)
# Status indicator
self.status_light = tk.Canvas(header_frame, width=20, height=20, bg=self.bg_color, bd=0, highlightthickness=0)
self.status_light.pack(side=tk.RIGHT, padx=10)
self.status_indicator = self.status_light.create_oval(2, 2, 18, 18, fill='red')
self.connection_label = ttk.Label(header_frame, text="Disconnected")
self.connection_label.pack(side=tk.RIGHT)
# Reconnect button
self.reconnect_btn = ttk.Button(header_frame, text="Reconnect", command=self.reconnect_device)
self.reconnect_btn.pack(side=tk.RIGHT, padx=10)
# Measurement display
display_frame = ttk.LabelFrame(self.content_frame, text=" Live Measurements ", padding=15)
display_frame.pack(fill=tk.BOTH, expand=False)
# Measurement values
measurement_labels = [
("Voltage (V)", "V"),
("Current (A)", "A"),
("Test Phase", ""),
("Elapsed Time", "s"),
("Discharge Capacity", "Ah"),
("Charge Capacity", "Ah"),
("Coulomb Eff.", "%"),
]
for i, (label, unit) in enumerate(measurement_labels):
ttk.Label(display_frame, text=f"{label}:", font=('Helvetica', 11)).grid(row=i//2, column=(i%2)*2, sticky=tk.W, pady=5)
value_label = ttk.Label(display_frame, text="0.000", style='Value.TLabel')
value_label.grid(row=i//2, column=(i%2)*2+1, sticky=tk.W, padx=10)
if unit:
ttk.Label(display_frame, text=unit).grid(row=i//2, column=(i%2)*2+2, sticky=tk.W)
if i == 0:
self.voltage_label = value_label
elif i == 1:
self.current_label = value_label
elif i == 2:
self.phase_label = value_label
elif i == 3:
self.time_label = value_label
elif i == 4:
self.capacity_label = value_label
elif i == 5:
self.charge_capacity_label = value_label
elif i == 6:
self.efficiency_label = value_label
# Control area
controls_frame = ttk.Frame(self.content_frame)
controls_frame.pack(fill=tk.X, pady=(10, 10), padx=0)
# Parameters frame
params_frame = ttk.LabelFrame(controls_frame, text="Test Parameters", padding=10)
params_frame.pack(side=tk.LEFT, fill=tk.X, expand=True)
# Battery capacity
ttk.Label(params_frame, text="Battery Capacity (Ah):").grid(row=0, column=0, sticky=tk.W)
ttk.Entry(params_frame, textvariable=self.capacity, width=6).grid(row=0, column=1, padx=5, sticky=tk.W)
# Charge cutoff
ttk.Label(params_frame, text="Charge Cutoff (V):").grid(row=1, column=0, sticky=tk.W)
ttk.Entry(params_frame, textvariable=self.charge_cutoff, width=6).grid(row=1, column=1, padx=5, sticky=tk.W)
# Discharge cutoff
ttk.Label(params_frame, text="Discharge Cutoff (V):").grid(row=2, column=0, sticky=tk.W)
ttk.Entry(params_frame, textvariable=self.discharge_cutoff, width=6).grid(row=2, column=1, padx=5, sticky=tk.W)
# Rest time
ttk.Label(params_frame, text="Rest Time (hours):").grid(row=3, column=0, sticky=tk.W)
ttk.Entry(params_frame, textvariable=self.rest_time, width=6).grid(row=3, column=1, padx=5, sticky=tk.W)
# C-rate for test (C/5 by default)
ttk.Label(params_frame, text="Test C-rate:").grid(row=0, column=2, sticky=tk.W, padx=(10,0))
ttk.Entry(params_frame, textvariable=self.c_rate, width=4).grid(row=0, column=3, padx=5, sticky=tk.W)
ttk.Label(params_frame, text="(e.g., 0.2 for C/5)").grid(row=0, column=4, sticky=tk.W)
# Start/Stop buttons
button_frame = ttk.Frame(controls_frame)
button_frame.pack(side=tk.RIGHT, padx=10)
self.start_button = ttk.Button(button_frame, text="START TEST", command=self.start_test, style='TButton')
self.start_button.pack(side=tk.TOP, pady=5)
self.stop_button = ttk.Button(button_frame, text="STOP TEST", command=self.stop_test, style='Warning.TButton', state=tk.DISABLED)
self.stop_button.pack(side=tk.TOP, pady=5)
# Plot area
self.plot_frame = ttk.Frame(self.content_frame)
self.plot_frame.pack(fill=tk.BOTH, expand=True, padx=20, pady=(0, 5))
self.setup_plot()
# Status bar
self.status_var = tk.StringVar()
self.status_var.set("Ready")
self.status_label = ttk.Label(self.root, textvariable=self.status_var, style='Status.TLabel', padding=(0, 5), anchor=tk.W)
self.status_label.place(x=20, relx=0, rely=1.0, anchor='sw', relwidth=0.96, height=28)
def setup_plot(self):
"""Configure the matplotlib plot"""
self.fig = Figure(figsize=(8, 5), dpi=100, facecolor='#2E3440')
self.fig.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.15)
self.ax = self.fig.add_subplot(111)
self.ax.set_facecolor('#3B4252')
# Voltage plot
self.line_voltage, = self.ax.plot([], [], color='#00BFFF', label='Voltage (V)', linewidth=2)
self.ax.set_ylabel("Voltage (V)", color='#00BFFF')
self.ax.tick_params(axis='y', labelcolor='#00BFFF')
# Current plot (right axis)
self.ax2 = self.ax.twinx()
self.line_current, = self.ax2.plot([], [], 'r-', label='Current (A)', linewidth=2)
self.ax2.set_ylabel("Current (A)", color='r')
self.ax2.tick_params(axis='y', labelcolor='r')
self.ax.set_xlabel('Time (s)', color=self.fg_color)
self.ax.set_title('Battery Test (CC)', color=self.fg_color)
self.ax.tick_params(axis='x', colors=self.fg_color)
self.ax.grid(True, color='#4C566A')
self.ax.legend(loc='upper left')
self.ax2.legend(loc='upper right')
# Embed plot
self.canvas = FigureCanvasTkAgg(self.fig, master=self.plot_frame)
self.canvas.draw()
canvas_widget = self.canvas.get_tk_widget()
canvas_widget.configure(bg='#2E3440', bd=0, highlightthickness=0)
canvas_widget.pack(side=tk.TOP, fill=tk.BOTH, expand=True, pady=(10, 0))
def init_device(self):
"""Initialize the ADALM1000 device with continuous measurement"""
try:
# First try to clean up any existing session
if hasattr(self, 'session'):
try:
self.session.end()
del self.session
except:
pass
# Add small delay to allow device to reset
time.sleep(1)
self.session = pysmu.Session(ignore_dataflow=True, queue_size=10000)
if not self.session.devices:
raise Exception("No ADALM1000 detected - check connections")
self.dev = self.session.devices[0]
# Reset channels
self.dev.channels['A'].mode = pysmu.Mode.HI_Z
self.dev.channels['B'].mode = pysmu.Mode.HI_Z
self.dev.channels['A'].constant(0)
self.dev.channels['B'].constant(0)
self.session.start(0)
self.status_light.itemconfig(self.status_indicator, fill='green')
self.connection_label.config(text="Connected")
self.status_var.set("Device connected | Ready to measure")
self.session_active = True
self.start_button.config(state=tk.NORMAL)
# Start continuous measurement thread
self.measurement_event = threading.Event()
self.measurement_event.set()
self.measurement_thread = threading.Thread(
target=self.continuous_measurement,
daemon=True
)
self.measurement_thread.start()
except Exception as e:
self.handle_device_error(e)
def continuous_measurement(self):
"""Continuous measurement with moving average filtering"""
filter_window_size = 10
voltage_window = []
current_window = []
# Initialize start_time for measurements
if not hasattr(self, 'start_time'):
self.start_time = time.time()
while self.measurement_event.is_set() and self.root.winfo_exists():
try:
# Read multiple samples for better accuracy
samples = self.dev.read(filter_window_size, 500, True)
if not samples:
raise DeviceDisconnectedError("No samples received")
# Get voltage from Channel B (HI_Z mode) and current from Channel A
raw_voltage = np.mean([s[1][0] for s in samples]) # Channel B voltage
raw_current = np.mean([s[0][1] for s in samples]) # Channel A current
current_time = time.time() - (self.start_time if hasattr(self, 'start_time') else time.time())
# Apply moving average filter
voltage_window.append(raw_voltage)
current_window.append(raw_current)
if len(voltage_window) > filter_window_size:
voltage_window.pop(0)
current_window.pop(0)
voltage = np.mean(voltage_window)
current = np.mean(current_window)
# Store filtered data
self.time_data.append(current_time)
self.voltage_data.append(voltage)
self.current_data.append(current)
# Update UI with filtered values
if self.root.winfo_exists():
self.root.after(0, lambda: self.update_measurement_display(voltage, current, current_time))
# Save data if in active test
if self.test_running and hasattr(self, 'filename'):
with open(self.filename, 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([
f"{current_time:.3f}",
f"{voltage:.6f}",
f"{current:.6f}",
self.test_phase.get(),
f"{self.capacity_ah.get():.4f}",
f"{self.charge_capacity.get():.4f}",
f"{self.coulomb_efficiency.get():.1f}"
])
time.sleep(max(0.05, self.interval))
except Exception as e:
error_msg = str(e)
if self.root.winfo_exists():
self.root.after(0, lambda msg=error_msg:
self.handle_device_error(f"Measurement error: {msg}") if self.root.winfo_exists() else None)
break
def start_test(self):
"""Start the full battery test cycle"""
if not self.test_running:
try:
# Validate inputs
if self.capacity.get() <= 0:
raise ValueError("Battery capacity must be positive")
if self.charge_cutoff.get() <= self.discharge_cutoff.get():
raise ValueError("Charge cutoff must be higher than discharge cutoff")
if self.c_rate.get() <= 0:
raise ValueError("C-rate must be positive")
# Reset timing for new test
self.measurement_start_time = time.time()
self.test_start_time = time.time()
# Calculate target current
test_current = self.c_rate.get() * self.capacity.get()
if test_current > 0.2:
raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000")
# Clear previous data
self.time_data.clear()
self.voltage_data.clear()
self.current_data.clear()
self.phase_data.clear()
self.capacity_ah.set(0.0)
self.charge_capacity.set(0.0)
self.coulomb_efficiency.set(0.0)
# Setup new log file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
self.filename = os.path.join(self.log_dir, f"battery_test_{timestamp}.csv")
with open(self.filename, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(["Time(s)", "Voltage(V)", "Current(A)", "Phase", "Discharge_Capacity(Ah)", "Charge_Capacity(Ah)", "Coulomb_Eff(%)"])
# Start test thread
self.test_running = True
self.start_time = time.time()
self.last_update_time = time.time()
self.test_phase.set("Initial Discharge")
self.start_button.config(state=tk.DISABLED)
self.stop_button.config(state=tk.NORMAL)
self.status_var.set(f"Test started | Discharging to {self.discharge_cutoff.get()}V @ {test_current:.3f}A")
# Start test sequence in a new thread
self.test_thread = threading.Thread(target=self.run_test_sequence, daemon=True)
self.test_thread.start()
except Exception as e:
messagebox.showerror("Error", str(e))
@staticmethod
def format_time(seconds):
"""Convert seconds to hh:mm:ss format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
def stop_test(self):
"""Stop the current test"""
self.test_running = False
self.measuring = False
if hasattr(self, 'dev'):
self.dev.channels['A'].constant(0) # Set zero current
# Write final summary if we have a filename
if hasattr(self, 'filename'):
self.write_cycle_summary()
self.start_button.config(state=tk.NORMAL)
self.stop_button.config(state=tk.DISABLED)
if hasattr(self, 'filename'):
self.status_var.set(f"Test completed in {self.format_time(self.time_data[-1])} | Results saved to: {os.path.basename(self.filename)}")
else:
self.status_var.set("Test stopped | No data saved")
def center_window(self, window):
"""Center a window on screen"""
window.update_idletasks()
width = window.winfo_width()
height = window.winfo_height()
x = (window.winfo_screenwidth() // 2) - (width // 2)
y = (window.winfo_screenheight() // 2) - (height // 2)
window.geometry(f'{width}x{height}+{x}+{y}')
def run_test_sequence(self):
"""Run the complete test sequence (discharge-rest-charge-rest-discharge) once"""
try:
# Calculate target current
test_current = self.c_rate.get() * self.capacity.get()
# 1. Initial Discharge (to known state)
#self.test_phase.set("Initial Discharge")
#self.status_var.set(f"Discharging to {self.discharge_cutoff.get()}V @ {test_current:.3f}A")
#self.measuring = True
#self.dev.channels['A'].mode = pysmu.Mode.SIMV
#self.dev.channels['A'].constant(-test_current)
self.dev.channels['B'].mode = pysmu.Mode.HI_Z
#while self.test_running:
# if not self.voltage_data:
# time.sleep(0.1)
# continue
# current_voltage = self.voltage_data[-1]
# current_current = abs(self.current_data[-1])
# self.status_var.set(
# f"Discharging: {current_voltage:.3f}V / {self.discharge_cutoff.get()}V | "
# f"Current: {current_current:.3f}A | "
# f"Time: {self.format_time(self.time_data[-1])}"
# )
# if current_voltage <= self.discharge_cutoff.get():
# break
# time.sleep(0.5)
#if not self.test_running:
# return
# 2. Rest period after initial discharge
#self.test_phase.set("Resting (Post-Discharge)")
#self.measuring = False
#self.dev.channels['A'].mode = pysmu.Mode.HI_Z
#self.dev.channels['A'].constant(0)
#rest_end_time = time.time() + (self.rest_time.get() * 3600)
#while time.time() < rest_end_time and self.test_running:
# time_left = max(0, rest_end_time - time.time())
# self.status_var.set(
# f"Resting after discharge | "
# f"Time left: {self.format_time(time_left)} | "
# f"Next: Charging to {self.charge_cutoff.get()}V"
# )
# time.sleep(1)
#if not self.test_running:
# return
# 3. Charge (constant current)
self.test_phase.set("Charge")
self.status_var.set(f"Charging to {self.charge_cutoff.get()}V @ {test_current:.3f}A")
self.measuring = True
self.dev.channels['A'].mode = pysmu.Mode.SIMV
self.dev.channels['A'].constant(test_current)
self.charge_capacity.set(0.0)
target_voltage = self.charge_cutoff.get()
self.last_update_time = time.time()
while self.test_running:
if not self.voltage_data:
time.sleep(0.1)
continue
current_voltage = self.voltage_data[-1]
measured_current = abs(self.current_data[-1])
time_elapsed = time.time() - self.last_update_time
# Update charge capacity
self.charge_capacity.set(self.charge_capacity.get() + measured_current * time_elapsed / 3600)
self.last_update_time = time.time()
self.status_var.set(
f"Charging: {current_voltage:.3f}V / {target_voltage}V | "
f"Current: {measured_current:.3f}A | "
f"Capacity: {self.charge_capacity.get():.4f}Ah | "
f"Time: {self.time_data[-1]:.1f}s"
)
if current_voltage >= target_voltage:
break
time.sleep(0.5)
if not self.test_running:
return
# 4. Rest period after charge
self.test_phase.set("Resting (Post-Charge)")
self.measuring = False
self.dev.channels['A'].mode = pysmu.Mode.HI_Z
self.dev.channels['A'].constant(0)
rest_end_time = time.time() + (self.rest_time.get() * 3600)
while time.time() < rest_end_time and self.test_running:
time_left = max(0, rest_end_time - time.time())
self.status_var.set(
f"Resting after charge | "
f"Time left: {time_left/60:.1f} min | "
f"Next: Final discharge to {self.discharge_cutoff.get()}V"
)
time.sleep(1)
if not self.test_running:
return
# 5. Final Discharge (capacity measurement)
self.test_phase.set("Final Discharge")
self.status_var.set(f"Final discharge to {self.discharge_cutoff.get()}V @ {test_current:.3f}A")
self.measuring = True
self.dev.channels['A'].mode = pysmu.Mode.SIMV
self.dev.channels['A'].constant(-test_current)
self.capacity_ah.set(0.0)
self.last_update_time = time.time()
while self.test_running:
if not self.current_data:
time.sleep(0.1)
continue
current_voltage = self.voltage_data[-1]
current_current = abs(self.current_data[-1])
# Calculate discharged capacity
self.capacity_ah.set(self.capacity_ah.get() + current_current * (time.time() - self.last_update_time) / 3600)
self.last_update_time = time.time()
self.status_var.set(
f"Discharging: {current_voltage:.3f}V / {self.discharge_cutoff.get()}V | "
f"Current: {current_current:.3f}A | "
f"Capacity: {self.capacity_ah.get():.4f}Ah | "
f"Time: {self.time_data[-1]:.1f}s"
)
# Check for discharge completion
if current_voltage <= self.discharge_cutoff.get():
break
time.sleep(0.5)
# Calculate Coulomb efficiency
if self.charge_capacity.get() > 0:
efficiency = (self.capacity_ah.get() / self.charge_capacity.get()) * 100
self.coulomb_efficiency.set(efficiency)
# Update GUI and show results
self.test_phase.set("Test Complete")
self.status_var.set(
f"Test complete | "
f"Discharge Capacity: {self.capacity_ah.get():.3f}Ah | "
f"Charge Capacity: {self.charge_capacity.get():.3f}Ah | "
f"Efficiency: {self.coulomb_efficiency.get():.1f}%"
)
# Show summary dialog
self.root.after(0, lambda: messagebox.showinfo("Test Complete",
f"Test complete\n\n"
f"Discharge Capacity: {self.capacity_ah.get():.3f}Ah\n"
f"Charge Capacity: {self.charge_capacity.get():.3f}Ah\n"
f"Coulomb Efficiency: {self.coulomb_efficiency.get():.1f}%\n\n"
f"({self.capacity_ah.get()/self.capacity.get()*100:.1f}% of rated capacity)"))
# Write final summary to log file
self.write_cycle_summary()
except Exception as e:
error_msg = str(e)
if self.root.winfo_exists():
self.root.after(0, lambda msg=error_msg: messagebox.showerror("Test Error", msg))
finally:
# Automatically stop the test after completion
self.root.after(0, self.stop_test)
def update_measurement_display(self, voltage, current, current_time):
"""Update display with current measurements"""
try:
self.voltage_label.config(text=f"{voltage:.4f}")
self.current_label.config(text=f"{current:.4f}")
self.phase_label.config(text=self.test_phase.get())
self.time_label.config(text=self.format_time(current_time))
self.capacity_label.config(text=f"{self.capacity_ah.get():.4f}")
self.charge_capacity_label.config(text=f"{self.charge_capacity.get():.4f}")
self.efficiency_label.config(text=f"{self.coulomb_efficiency.get():.1f}")
# Update plot with proper scaling
self.update_plot()
except Exception as e:
print(f"GUI update error: {e}")
def write_cycle_summary(self):
"""Write cycle summary to the log file"""
if not hasattr(self, 'filename'):
return
summary_line = (
f"Discharge={self.capacity_ah.get():.4f}Ah, "
f"Charge={self.charge_capacity.get():.4f}Ah, "
f"Efficiency={self.coulomb_efficiency.get():.1f}%"
)
with open(self.filename, 'a', newline='') as f:
f.write(summary_line + "\n")
def update_plot(self):
"""Update plot with proper scaling and limits"""
if not self.time_data:
return
# Update plot data
self.line_voltage.set_data(self.time_data, self.voltage_data)
self.line_current.set_data(self.time_data, self.current_data)
# Set x-axis to always show from 0 to current max time
min_time = 0 # Always start from 0
max_time = self.time_data[-1] + 1 # Add 1 second padding
self.ax.set_xlim(min_time, max_time)
self.ax2.set_xlim(min_time, max_time)
# Auto-scale y-axes with some margin
if self.voltage_data:
voltage_margin = 0.2
min_voltage = max(0, min(self.voltage_data) - voltage_margin)
max_voltage = max(self.voltage_data) + voltage_margin
self.ax.set_ylim(min_voltage, max_voltage)
if self.current_data:
current_margin = 0.05
min_current = min(self.current_data) - current_margin
max_current = max(self.current_data) + current_margin
self.ax2.set_ylim(min_current, max_current)
self.canvas.draw()
def handle_device_error(self, error):
"""Handle device connection errors"""
if not self.root.winfo_exists(): # Check if window still exists
return
error_msg = str(error)
print(f"Device error: {error_msg}")
self.root.after_idle(lambda: self.status_light.itemconfig(self.status_indicator, fill='red'))
self.connection_label.config(text="Disconnected")
self.status_var.set(f"Device error: {error_msg}")
self.session_active = False
self.test_running = False
self.measuring = False
if hasattr(self, 'start_button'):
self.start_button.config(state=tk.DISABLED)
if hasattr(self, 'stop_button'):
self.stop_button.config(state=tk.DISABLED)
# Clear plot + buffers
self.time_data.clear()
self.voltage_data.clear()
self.current_data.clear()
if hasattr(self, 'line_voltage') and hasattr(self, 'line_current'):
self.line_voltage.set_data([], [])
self.line_current.set_data([], [])
self.ax.set_xlim(0, 1)
self.ax2.set_xlim(0, 1)
self.canvas.draw()
# Clean up session
if hasattr(self, 'session'):
try:
if self.session_active:
self.session.end()
del self.session
except:
pass
if self.root.winfo_exists(): # Double-check before showing message
try:
messagebox.showerror(
"Device Connection Error",
f"Could not connect to ADALM1000:\n\n{error_msg}\n\n"
"1. Check USB cable connection\n"
"2. Try the Reconnect button\n"
"3. Restart the application if problem persists"
)
except:
pass # Ignore errors if window is being destroyed
def reconnect_device(self):
"""Reconnect the device"""
self.status_var.set("Attempting to reconnect...")
self.test_running = False
self.measuring = False
if hasattr(self, 'measurement_event'):
self.measurement_event.clear()
# Wait for threads to finish
if hasattr(self, 'measurement_thread'):
self.measurement_thread.join(timeout=1.0)
if hasattr(self, 'test_thread'):
self.test_thread.join(timeout=1.0)
# Reset before reinitializing
self.handle_device_error("Reconnecting...")
self.init_device()
def on_close(self):
"""Clean up on window close"""
if hasattr(self, 'measurement_event'):
self.measurement_event.clear()
if hasattr(self, 'measurement_thread'):
self.measurement_thread.join(timeout=1.0)
if hasattr(self, 'test_thread'):
self.test_thread.join(timeout=1.0)
if hasattr(self, 'session') and self.session:
try:
if self.session_active:
self.session.end()
except:
pass
self.root.destroy()
if __name__ == "__main__":
root = tk.Tk()
try:
app = BatteryTester(root)
root.mainloop()
except Exception as e:
if root.winfo_exists():
messagebox.showerror("Fatal Error", f"Application failed: {str(e)}")
else:
print(f"Fatal Error: {e}")
try:
root.destroy()
except:
pass