# -*- coding: utf-8 -*- import os import time import csv import threading from datetime import datetime import numpy as np import matplotlib matplotlib.use('Qt5Agg') from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from collections import deque from queue import Queue, Full, Empty from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QGridLayout, QLabel, QPushButton, QLineEdit, QCheckBox, QFrame, QMessageBox, QFileDialog, QComboBox) from PyQt5.QtCore import Qt, QTimer, pyqtSignal, pyqtSlot, QObject, QThread from PyQt5 import sip import pysmu import pysmu.libsmu from pysmu.exceptions import SessionError class PatchedSession(pysmu.Session): def __init__(self, ignore_dataflow=False, queue_size=0): try: super().__init__(ignore_dataflow=ignore_dataflow, queue_size=queue_size) except SessionError as e: if "failed scanning and/or adding all supported devices" in str(e): print("⚠️ Ignored add_all() busy-device error, continuing...") # The parent __init__ still runs and creates a session object # We'll manually add devices later in init_device() else: raise class DeviceManager: def __init__(self, dev): self.dev = dev self.serial = dev.serial self.measurement_thread = None self.is_running = False # Datenpuffer max_data_points = 36000 self.time_data = deque(maxlen=max_data_points) self.voltage_data = deque(maxlen=max_data_points) self.current_data = deque(maxlen=max_data_points) self.display_time_data = deque(maxlen=10000) self.display_voltage_data = deque(maxlen=10000) self.display_current_data = deque(maxlen=10000) # Testzustand self.capacity_ah = 0.0 self.energy = 0.0 self.charge_capacity = 0.0 self.coulomb_efficiency = 0.0 self.cycle_count = 0 self.test_phase = "Idle" self.start_time = time.time() # Logging self.current_cycle_file = None self.log_writer = None # Downsampling self.downsample_factor = 1 self.aggregation_buffer = { 'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0 } def start_measurement(self, interval=0.1): if self.measurement_thread: self.measurement_thread.stop() self.measurement_thread.wait(500) self.measurement_thread = MeasurementThread(self.dev, interval) self.measurement_thread.start() self.is_running = True def stop_measurement(self): if self.measurement_thread: self.measurement_thread.stop() self.measurement_thread.wait(500) self.is_running = False def reset_data(self): self.time_data.clear() self.voltage_data.clear() self.current_data.clear() self.display_time_data.clear() self.display_voltage_data.clear() self.display_current_data.clear() self.aggregation_buffer = { 'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0 } self.capacity_ah = 0.0 self.energy = 0.0 self.charge_capacity = 0.0 self.coulomb_efficiency = 0.0 self.cycle_count = 0 self.start_time = time.time() self.test_phase = "Idle" class DeviceDisconnectedError(Exception): pass class MeasurementThread(QThread): update_signal = pyqtSignal(float, float, float) error_signal = pyqtSignal(str) def __init__(self, device, interval=0.1): super().__init__() self.device = device self.interval = interval self._running = False self.filter_window_size = 10 self.voltage_window = [] self.current_window = [] self.start_time = None self.measurement_queue = Queue(maxsize=1) self.current_direction = 1 # 1 for source, -1 for sink def run(self): """Continuous measurement loop""" self._running = True if self.start_time is None: self.start_time = time.time() while self._running: try: samples = self.device.read(self.filter_window_size, 500, True) if not samples: raise DeviceDisconnectedError("No samples received") current_time = time.time() - self.start_time # Get voltage from Channel B (HI_Z mode) and current from Channel A raw_voltage = np.mean([s[1][0] for s in samples]) # Channel B voltage raw_current = np.mean([s[0][1] for s in samples]) * self.current_direction # Channel A current with direction # Update filter windows self.voltage_window.append(raw_voltage) self.current_window.append(raw_current) if len(self.voltage_window) > self.filter_window_size: self.voltage_window.pop(0) self.current_window.pop(0) voltage = np.mean(self.voltage_window) current = np.mean(self.current_window) # Validate measurements if voltage is None or not (-1.0 <= voltage <= 6.0): raise ValueError(f"Invalid voltage: {voltage}V") if not (-0.25 <= current <= 0.25): raise ValueError(f"Invalid current: {current}A") # Emit update self.update_signal.emit(voltage, current, current_time) # Store measurement try: self.measurement_queue.put_nowait((voltage, current)) except Full: pass time.sleep(max(0.05, self.interval)) except Exception as e: self.error_signal.emit(f"Read error: {str(e)}") time.sleep(1) continue def set_direction(self, direction): """Set current direction (1 for source, -1 for sink)""" self.current_direction = direction def stop(self): self._running = False self.wait(500) class TestSequenceWorker(QObject): finished = pyqtSignal() update_phase = pyqtSignal(str) update_status = pyqtSignal(str) test_completed = pyqtSignal() error_occurred = pyqtSignal(str) def __init__(self, device, test_current, charge_cutoff, discharge_cutoff, rest_time, continuous_mode, parent): super().__init__() self.device = device self.test_current = test_current self.charge_cutoff = charge_cutoff self.discharge_cutoff = discharge_cutoff self.rest_time = rest_time * 3600 # Convert hours to seconds self.continuous_mode = continuous_mode self.parent = parent self._running = True self.voltage_timeout = 0.5 # seconds def get_latest_measurement(self): """Thread-safe measurement reading with timeout""" try: return self.parent.measurement_thread.measurement_queue.get( timeout=self.voltage_timeout ) except Empty: return (None, None) # Return tuple for unpacking def charge_phase(self): """Handle the battery charging phase""" self.update_phase.emit("Charge") self.update_status.emit(f"Charging to {self.charge_cutoff}V @ {self.test_current:.4f}A") try: # Configure channels - Channel A sources current, Channel B measures voltage self.device.channels['B'].mode = pysmu.Mode.HI_Z self.device.channels['A'].mode = pysmu.Mode.SIMV self.device.channels['A'].constant(self.test_current) self.parent.measurement_thread.set_direction(1) # Source current # Small delay to allow current to stabilize time.sleep(0.1) while self._running: voltage, current = self.get_latest_measurement() if voltage is None: continue # Update parent's data for logging/display with self.parent.plot_mutex: if len(self.parent.voltage_data) > 0: self.parent.voltage_data[-1] = voltage self.parent.current_data[-1] = current if voltage >= self.charge_cutoff: break time.sleep(0.1) finally: self.device.channels['A'].mode = pysmu.Mode.HI_Z self.device.channels['A'].constant(0) def discharge_phase(self): """Handle the battery discharging phase""" voltage, _ = self.get_latest_measurement() if voltage is not None and voltage <= self.discharge_cutoff: self.update_status.emit(f"Already below discharge cutoff ({voltage:.4f}V ≤ {self.discharge_cutoff}V)") return self.update_phase.emit("Discharge") self.update_status.emit(f"Discharging to {self.discharge_cutoff}V @ {self.test_current:.4f}A") try: # Configure channels - Channel A sinks current, Channel B measures voltage self.device.channels['B'].mode = pysmu.Mode.HI_Z self.device.channels['A'].mode = pysmu.Mode.SIMV self.device.channels['A'].constant(-self.test_current) self.parent.measurement_thread.set_direction(-1) # Sink current # Small delay to allow current to stabilize time.sleep(0.1) while self._running: voltage, current = self.get_latest_measurement() if voltage is None: continue # Update parent's data for logging/display with self.parent.plot_mutex: if len(self.parent.voltage_data) > 0: self.parent.voltage_data[-1] = voltage self.parent.current_data[-1] = current if voltage <= self.discharge_cutoff: break time.sleep(0.1) finally: self.device.channels['A'].mode = pysmu.Mode.HI_Z self.device.channels['A'].constant(0) def rest_phase(self, phase_name): """Handle rest period between phases""" self.update_phase.emit(f"Resting ({phase_name})") rest_end = time.time() + self.rest_time while time.time() < rest_end and self._running: time_left = max(0, rest_end - time.time()) self.update_status.emit(f"Resting | Time left: {time_left/60:.1f} min") time.sleep(1) def stop(self): """Request the thread to stop""" self._running = False try: self.device.channels['A'].mode = pysmu.Mode.HI_Z self.device.channels['A'].constant(0) self.device.channels['B'].mode = pysmu.Mode.HI_Z except Exception as e: print(f"Error stopping device: {e}") def run(self): """Main test sequence loop""" try: first_cycle = True # Ensure at least one cycle runs while (self._running and (self.parent.continuous_mode_check.isChecked() or first_cycle)): self.parent.request_stop = False self.parent.cycle_count += 1 first_cycle = False # Only True for the first cycle # 1. Charge phase (constant current) self.charge_phase() if not self._running or self.parent.request_stop: break # 2. Rest period after charge self.rest_phase("Post-Charge") if not self._running or self.parent.request_stop: break # 3. Discharge phase (capacity measurement) self.discharge_phase() if not self._running or self.parent.request_stop: break # 4. Rest period after discharge (only if not stopping) if self._running and not self.parent.request_stop: self.rest_phase("Post-Discharge") # Calculate Coulomb efficiency if not stopping if not self.parent.request_stop and self.parent.charge_capacity > 0: self.parent.coulomb_efficiency = ( self.parent.capacity_ah / self.parent.charge_capacity ) * 100 # Test completed self.test_completed.emit() except Exception as e: self.error_occurred.emit(f"Test sequence error: {str(e)}") finally: self.finished.emit() class DischargeWorker(QObject): finished = pyqtSignal() update_status = pyqtSignal(str) test_completed = pyqtSignal() error_occurred = pyqtSignal(str) def __init__(self, device, test_current, discharge_cutoff, parent): super().__init__() self.device = device self.test_current = test_current self.discharge_cutoff = discharge_cutoff self.parent = parent self._running = True self.voltage_timeout = 0.5 # seconds def get_latest_measurement(self): """Thread-safe measurement reading with timeout""" try: return self.parent.measurement_thread.measurement_queue.get( timeout=self.voltage_timeout ) except Empty: return (None, None) # Return tuple for unpacking def discharge_phase(self): """Handle the battery discharging phase""" voltage, _ = self.get_latest_measurement() if voltage is not None and voltage <= self.discharge_cutoff: self.update_status.emit(f"Already below discharge cutoff ({voltage:.4f}V ≤ {self.discharge_cutoff}V)") return self.update_status.emit(f"Discharging to {self.discharge_cutoff}V @ {self.test_current:.4f}A") try: # Configure channels - Channel A sinks current, Channel B measures voltage self.device.channels['B'].mode = pysmu.Mode.HI_Z self.device.channels['A'].mode = pysmu.Mode.SIMV self.device.channels['A'].constant(-self.test_current) self.parent.measurement_thread.set_direction(-1) # Sink current # Small delay to allow current to stabilize time.sleep(0.1) while self._running: voltage, current = self.get_latest_measurement() if voltage is None: continue # Update parent's data for logging/display with self.parent.plot_mutex: if len(self.parent.voltage_data) > 0: self.parent.voltage_data[-1] = voltage self.parent.current_data[-1] = current if voltage <= self.discharge_cutoff: break time.sleep(0.1) finally: self.device.channels['A'].mode = pysmu.Mode.HI_Z self.device.channels['A'].constant(0) def stop(self): """Request the thread to stop""" self._running = False try: self.device.channels['A'].mode = pysmu.Mode.HI_Z self.device.channels['A'].constant(0) self.device.channels['B'].mode = pysmu.Mode.HI_Z except Exception as e: print(f"Error stopping device: {e}") def run(self): """Main discharge sequence""" try: self.parent.request_stop = False self.parent.cycle_count = 1 # Only one discharge cycle # Discharge phase self.discharge_phase() if not self._running or self.parent.request_stop: return # Test completed self.test_completed.emit() except Exception as e: self.error_occurred.emit(f"Discharge error: {str(e)}") finally: self.finished.emit() class ChargeWorker(QObject): finished = pyqtSignal() update_status = pyqtSignal(str) test_completed = pyqtSignal() error_occurred = pyqtSignal(str) def __init__(self, device, test_current, charge_cutoff, parent): super().__init__() self.device = device self.test_current = test_current self.charge_cutoff = charge_cutoff self.parent = parent self._running = True def run(self): """Main charge sequence""" try: self.parent.measurement_thread.set_direction(1) # Source current # Configure channels - Channel A sources current, Channel B measures voltage self.device.channels['B'].mode = pysmu.Mode.HI_Z self.device.channels['A'].mode = pysmu.Mode.SIMV self.device.channels['A'].constant(self.test_current) time.sleep(0.1) # Allow current to stabilize while self._running: voltage, current = self.parent.get_latest_measurement() if voltage is None: continue # Update parent's data for logging/display with self.parent.plot_mutex: if len(self.parent.voltage_data) > 0: self.parent.voltage_data[-1] = voltage self.parent.current_data[-1] = current if voltage >= self.charge_cutoff: break time.sleep(0.1) self.test_completed.emit() except Exception as e: self.error_occurred.emit(f"Charge error: {str(e)}") finally: self.device.channels['A'].constant(0) self.finished.emit() def stop(self): """Request the thread to stop""" self._running = False try: self.device.channels['A'].constant(0) except Exception as e: print(f"Error stopping charge: {e}") class BatteryTester(QMainWindow): def __init__(self): self.plot_mutex = threading.Lock() super().__init__() self.devices = {} # Dictionary DeviceManager-Instanzen self.active_device = None self.last_logged_phase = None # Color scheme self.bg_color = "#2E3440" self.fg_color = "#D8DEE9" self.accent_color = "#5E81AC" self.warning_color = "#BF616A" self.success_color = "#A3BE8C" # Device and measurement state self.session_active = False self.measuring = False self.test_running = False self.continuous_mode = False self.request_stop = False self.interval = 0.1 self.log_dir = os.path.expanduser("~/adalm1000/logs") os.makedirs(self.log_dir, exist_ok=True) # Data buffers max_data_points = 36000 # Define this first self.time_data = deque(maxlen=max_data_points) self.voltage_data = deque(maxlen=max_data_points) self.current_data = deque(maxlen=max_data_points) self.max_points_to_keep = 10000 self.display_time_data = deque(maxlen=self.max_points_to_keep) self.display_voltage_data = deque(maxlen=self.max_points_to_keep) self.display_current_data = deque(maxlen=self.max_points_to_keep) self.aggregation_buffer = { 'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0 } self.phase_data = deque() self.downsample_factor = 1 # Initial kein Downsampling self.downsample_counter = 0 # Initialize all measurement variables self.capacity_ah = 0.0 self.energy = 0.0 self.charge_capacity = 0.0 self.coulomb_efficiency = 0.0 self.cycle_count = 0 self.start_time = time.time() self.last_update_time = self.start_time # Initialize UI and device self.setup_ui() self.init_device() # Set window properties self.setWindowTitle("ADALM1000 - Battery Tester (Multi-Mode)") self.resize(1000, 800) self.setMinimumSize(800, 700) # Status update timer self.status_timer = QTimer() self.status_timer.timeout.connect(self.update_status_and_plot) self.status_timer.start(1000) #every second def setup_ui(self): """Configure the user interface""" # Main widget and layout self.central_widget = QWidget() self.setCentralWidget(self.central_widget) self.main_layout = QVBoxLayout(self.central_widget) self.main_layout.setContentsMargins(10, 10, 10, 10) # Mode and device selection mode_frame = QFrame() mode_frame.setFrameShape(QFrame.StyledPanel) mode_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}") mode_layout = QHBoxLayout(mode_frame) # Test mode selection self.mode_label = QLabel("Test Mode:") self.mode_label.setStyleSheet(f"color: {self.fg_color};") mode_layout.addWidget(self.mode_label) self.mode_combo = QComboBox() self.mode_combo.addItems(["Live Monitoring", "Discharge Test", "Charge Test", "Cycle Test"]) self.mode_combo.setStyleSheet(f""" QComboBox {{ background-color: #3B4252; color: {self.fg_color}; border: 1px solid #4C566A; border-radius: 3px; padding: 2px; }} """) self.mode_combo.currentTextChanged.connect(self.change_mode) mode_layout.addWidget(self.mode_combo, 1) # Device selection self.device_label = QLabel("Device:") self.device_label.setStyleSheet(f"color: {self.fg_color};") mode_layout.addWidget(self.device_label) self.device_combo = QComboBox() self.device_combo.setStyleSheet(f""" QComboBox {{ background-color: #3B4252; color: {self.fg_color}; border: 1px solid #4C566A; border-radius: 3px; padding: 2px; }} """) self.device_combo.currentIndexChanged.connect(self.change_device) mode_layout.addWidget(self.device_combo, 1) self.main_layout.addWidget(mode_frame) # Header area header_frame = QFrame() header_frame.setFrameShape(QFrame.NoFrame) header_layout = QHBoxLayout(header_frame) header_layout.setContentsMargins(0, 0, 0, 0) self.title_label = QLabel("ADALM1000 Battery Tester") self.title_label.setStyleSheet(f"font-size: 14pt; font-weight: bold; color: {self.accent_color};") header_layout.addWidget(self.title_label, 1) # Status indicator self.status_light = QLabel() self.status_light.setFixedSize(20, 20) self.status_light.setStyleSheet("background-color: red; border-radius: 10px;") header_layout.addWidget(self.status_light) self.connection_label = QLabel("Disconnected") header_layout.addWidget(self.connection_label) # Reconnect button self.reconnect_btn = QPushButton("Reconnect") self.reconnect_btn.clicked.connect(self.reconnect_device) header_layout.addWidget(self.reconnect_btn) self.main_layout.addWidget(header_frame) # Measurement display display_frame = QFrame() display_frame.setFrameShape(QFrame.StyledPanel) display_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}") display_layout = QGridLayout(display_frame) # Measurement values - common for all modes measurement_labels = [ ("Voltage", "V"), ("Current", "A"), ("Test Phase", ""), ("Elapsed Time", "s"), ("Capacity", "Ah"), ("Power", "W"), ("Energy", "Wh"), ("Cycle Count", ""), ("Battery Temp", "°C") ] for i, (label, unit) in enumerate(measurement_labels): row = i // 3 col = (i % 3) * 3 lbl = QLabel(f"{label}:") lbl.setStyleSheet(f"color: {self.fg_color}; font-size: 11px;") display_layout.addWidget(lbl, row, col) value_lbl = QLabel("0.000") value_lbl.setStyleSheet(f""" color: {self.fg_color}; font-weight: bold; font-size: 12px; min-width: 60px; """) display_layout.addWidget(value_lbl, row, col + 1) if unit: unit_lbl = QLabel(unit) unit_lbl.setStyleSheet(f"color: {self.fg_color}; font-size: 11px;") display_layout.addWidget(unit_lbl, row, col + 2) for i in range(9): display_layout.setColumnStretch(i, 1 if i % 3 == 1 else 0) self.voltage_label = display_layout.itemAtPosition(0, 1).widget() self.current_label = display_layout.itemAtPosition(0, 4).widget() self.phase_label = display_layout.itemAtPosition(0, 7).widget() self.time_label = display_layout.itemAtPosition(1, 1).widget() self.capacity_label = display_layout.itemAtPosition(1, 4).widget() self.power_label = display_layout.itemAtPosition(1, 7).widget() self.energy_label = display_layout.itemAtPosition(2, 1).widget() self.cycle_label = display_layout.itemAtPosition(2, 4).widget() self.temp_label = display_layout.itemAtPosition(2, 7).widget() self.main_layout.addWidget(display_frame) # Control area controls_frame = QFrame() controls_frame.setFrameShape(QFrame.NoFrame) controls_layout = QHBoxLayout(controls_frame) controls_layout.setContentsMargins(0, 0, 0, 0) # Parameters frame self.params_frame = QFrame() self.params_frame.setFrameShape(QFrame.StyledPanel) self.params_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}") self.params_layout = QGridLayout(self.params_frame) # Common parameters self.capacity = 0.2 self.capacity_label_input = QLabel("Battery Capacity (Ah):") self.capacity_label_input.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(self.capacity_label_input, 0, 0) self.capacity_input = QLineEdit("0.2") self.capacity_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") self.capacity_input.setFixedWidth(60) self.params_layout.addWidget(self.capacity_input, 0, 1) # C-rate for test self.c_rate = 0.1 self.c_rate_label = QLabel("Test C-rate:") self.c_rate_label.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(self.c_rate_label, 1, 0) self.c_rate_input = QLineEdit("0.1") self.c_rate_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") self.c_rate_input.setFixedWidth(40) self.params_layout.addWidget(self.c_rate_input, 1, 1) c_rate_note = QLabel("(e.g., 0.2 for C/5)") c_rate_note.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(c_rate_note, 1, 2) # Discharge cutoff (used in Discharge and Cycle modes) self.discharge_cutoff = 0.9 self.discharge_cutoff_label = QLabel("Discharge Cutoff (V):") self.discharge_cutoff_label.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(self.discharge_cutoff_label, 2, 0) self.discharge_cutoff_input = QLineEdit("0.9") self.discharge_cutoff_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") self.discharge_cutoff_input.setFixedWidth(60) self.params_layout.addWidget(self.discharge_cutoff_input, 2, 1) # Charge cutoff (only for Cycle mode) self.charge_cutoff = 1.43 self.charge_cutoff_label = QLabel("Charge Cutoff (V):") self.charge_cutoff_label.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(self.charge_cutoff_label, 3, 0) self.charge_cutoff_input = QLineEdit("1.43") self.charge_cutoff_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") self.charge_cutoff_input.setFixedWidth(60) self.params_layout.addWidget(self.charge_cutoff_input, 3, 1) self.charge_cutoff_label.hide() self.charge_cutoff_input.hide() # Rest time (only for Cycle mode) self.rest_time = 0.25 self.rest_time_label = QLabel("Rest Time (hours):") self.rest_time_label.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(self.rest_time_label, 4, 0) self.rest_time_input = QLineEdit("0.25") self.rest_time_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") self.rest_time_input.setFixedWidth(60) self.params_layout.addWidget(self.rest_time_input, 4, 1) self.rest_time_label.hide() self.rest_time_input.hide() # Test conditions input self.test_conditions_label = QLabel("Test Conditions/Chemistry:") self.test_conditions_label.setStyleSheet(f"color: {self.fg_color};") self.params_layout.addWidget(self.test_conditions_label, 5, 0) self.test_conditions_input = QLineEdit("") self.test_conditions_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") self.test_conditions_input.setFixedWidth(120) self.params_layout.addWidget(self.test_conditions_input, 5, 1) controls_layout.addWidget(self.params_frame, 1) # Button frame button_frame = QFrame() button_frame.setFrameShape(QFrame.NoFrame) button_layout = QVBoxLayout(button_frame) button_layout.setContentsMargins(0, 0, 0, 0) # Start/Stop buttons self.start_button = QPushButton("START") self.start_button.setStyleSheet(f""" QPushButton {{ background-color: {self.accent_color}; color: {self.fg_color}; font-weight: bold; padding: 6px; border-radius: 4px; }} QPushButton:disabled {{ background-color: #4C566A; color: #D8DEE9; }} """) self.start_button.clicked.connect(self.start_test) button_layout.addWidget(self.start_button) self.stop_button = QPushButton("STOP") self.stop_button.setStyleSheet(f""" QPushButton {{ background-color: {self.warning_color}; color: {self.fg_color}; font-weight: bold; padding: 6px; border-radius: 4px; }} QPushButton:disabled {{ background-color: #4C566A; color: #D8DEE9; }} """) self.stop_button.clicked.connect(self.stop_test) self.stop_button.setEnabled(False) button_layout.addWidget(self.stop_button) # Continuous mode checkbox (only for Cycle mode) self.continuous_mode_check = QCheckBox("Continuous Mode") self.continuous_mode_check.setChecked(True) self.continuous_mode_check.setStyleSheet(f"color: {self.fg_color};") button_layout.addWidget(self.continuous_mode_check) self.continuous_mode_check.stateChanged.connect(self.handle_continuous_mode_change) self.continuous_mode_check.hide() # Record button for Live mode self.record_button = QPushButton("Start Recording") self.record_button.setCheckable(True) self.record_button.setStyleSheet(f""" QPushButton {{ background-color: {self.success_color}; color: {self.fg_color}; font-weight: bold; padding: 6px; border-radius: 4px; }} QPushButton:checked {{ background-color: {self.warning_color}; }} """) self.record_button.clicked.connect(self.toggle_recording) button_layout.addWidget(self.record_button) self.record_button.hide() controls_layout.addWidget(button_frame) self.main_layout.addWidget(controls_frame) # Plot area self.setup_plot() # Status bar self.status_bar = self.statusBar() self.status_bar.setStyleSheet(f"color: {self.fg_color};") self.status_bar.showMessage("Ready") # Apply dark theme self.setStyleSheet(f""" QMainWindow {{ background-color: {self.bg_color}; }} QLabel {{ color: {self.fg_color}; }} QLineEdit {{ background-color: #3B4252; color: {self.fg_color}; border: 1px solid #4C566A; border-radius: 3px; padding: 2px; }} """) # Set initial mode self.current_mode = "Live Monitoring" self.mode_combo.setCurrentText(self.current_mode) self.change_mode(self.current_mode) # Initialize UI for live mode def change_mode(self, mode_name): """Change between different test modes""" self.current_mode = mode_name self.stop_test() # Stop any current operation # Hide all optional parameters first self.charge_cutoff_label.hide() self.charge_cutoff_input.hide() self.discharge_cutoff_label.hide() self.discharge_cutoff_input.hide() self.rest_time_label.hide() self.rest_time_input.hide() self.continuous_mode_check.hide() self.record_button.hide() # Show mode-specific parameters if mode_name == "Cycle Test": self.charge_cutoff_label.show() self.charge_cutoff_input.show() self.discharge_cutoff_label.show() self.discharge_cutoff_input.show() self.rest_time_label.show() self.rest_time_input.show() self.continuous_mode_check.show() self.start_button.setText("START CYCLE TEST") self.start_button.setEnabled(True) # Explicitly enable elif mode_name == "Discharge Test": self.discharge_cutoff_label.show() self.discharge_cutoff_input.show() self.start_button.setText("START DISCHARGE") self.start_button.setEnabled(True) # Explicitly enable elif mode_name == "Charge Test": self.charge_cutoff_label.show() self.charge_cutoff_input.show() self.start_button.setText("START CHARGE") self.start_button.setEnabled(True) # Explicitly enable elif mode_name == "Live Monitoring": self.record_button.show() self.start_button.setText("START MONITORING") # Only enable start button if device is connected self.start_button.setEnabled(self.session_active) # Reset measurement state self.reset_test() self.status_bar.showMessage(f"Mode changed to {mode_name}") def reset_test(self): """Reset test state for the active device""" if not self.active_device: return dev_manager = self.active_device # Reset data buffers with self.plot_mutex: dev_manager.time_data.clear() dev_manager.voltage_data.clear() dev_manager.current_data.clear() dev_manager.display_time_data.clear() dev_manager.display_voltage_data.clear() dev_manager.display_current_data.clear() # Reset state variables dev_manager.capacity_ah = 0.0 dev_manager.energy = 0.0 dev_manager.charge_capacity = 0.0 dev_manager.coulomb_efficiency = 0.0 dev_manager.cycle_count = 0 dev_manager.start_time = time.time() dev_manager.test_phase = "Idle" # Reset UI self.capacity_label.setText("0.0000") self.energy_label.setText("0.0000") self.cycle_label.setText("0") self.phase_label.setText(dev_manager.test_phase) def toggle_recording(self): """Toggle data recording in Live Monitoring mode""" if self.record_button.isChecked(): # Start recording try: # Reset previous data self.reset_test() # Reset measurement timing if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() if self.create_cycle_log_file(): self.record_button.setText("Stop Recording") self.status_bar.showMessage("Live recording started") # Ensure monitoring is running if not self.test_running: self.start_live_monitoring() else: self.record_button.setChecked(False) self.current_cycle_file = None except Exception as e: print(f"Error starting recording: {e}") self.record_button.setChecked(False) self.current_cycle_file = None QMessageBox.critical(self, "Error", f"Failed to start recording:\n{str(e)}") else: # Stop recording try: if hasattr(self, 'current_cycle_file') and self.current_cycle_file is not None: self.finalize_log_file() self.record_button.setText("Start Recording") self.status_bar.showMessage("Live recording stopped") except Exception as e: print(f"Error stopping recording: {e}") def handle_continuous_mode_change(self, state): """Handle changes to continuous mode checkbox during operation""" if not state and self.test_running: # If unchecked during test self.status_bar.showMessage("Continuous mode disabled - will complete current cycle") self.continuous_mode_check.setStyleSheet(f"color: {self.warning_color};") QTimer.singleShot(2000, lambda: self.continuous_mode_check.setStyleSheet(f"color: {self.fg_color};")) def setup_plot(self): """Configure the matplotlib plot""" self.fig = Figure(figsize=(8, 5), dpi=100, facecolor=self.bg_color) self.fig.subplots_adjust(left=0.1, right=0.88, top=0.9, bottom=0.15) self.ax = self.fig.add_subplot(111) self.ax.set_facecolor('#3B4252') # Set initial voltage range voltage_padding = 0.2 min_voltage = max(0, 0.9 - voltage_padding) max_voltage = 1.43 + voltage_padding self.ax.set_ylim(min_voltage, max_voltage) # Voltage plot self.line_voltage, = self.ax.plot([], [], color='#00BFFF', label='Voltage (V)', linewidth=2) self.ax.set_ylabel("Voltage (V)", color='#00BFFF') self.ax.tick_params(axis='y', labelcolor='#00BFFF') # Current plot (right axis) self.ax2 = self.ax.twinx() current_padding = 0.05 test_current = 0.1 * 0.2 # Default values max_current = test_current * 1.5 self.ax2.set_ylim(-max_current - current_padding, max_current + current_padding) self.line_current, = self.ax2.plot([], [], 'r-', label='Current (A)', linewidth=2) self.ax2.set_ylabel("Current (A)", color='r') self.ax2.tick_params(axis='y', labelcolor='r') self.ax.set_xlabel('Time (s)', color=self.fg_color) self.ax.set_title('Battery Test', color=self.fg_color) self.ax.tick_params(axis='x', colors=self.fg_color) self.ax.grid(True, color='#4C566A') # Position legends self.ax.legend(loc='upper left', bbox_to_anchor=(0.01, 0.99)) self.ax2.legend(loc='upper right', bbox_to_anchor=(0.99, 0.99)) # Embed plot self.canvas = FigureCanvas(self.fig) self.canvas.setStyleSheet(f"background-color: {self.bg_color};") self.main_layout.addWidget(self.canvas, 1) def init_device(self): """Initialize all ADALM1000 with proper permission handling""" try: # Cleanup previous session if hasattr(self, 'session'): try: self.session.end() except: pass del self.session self.session = PatchedSession(ignore_dataflow=True, queue_size=10000) if not self.session.devices: self.status_bar.showMessage("No ADALM1000 devices found") self.session_active = False self.active_device = None # Sicherstellen, dass es None ist return self.devices.clear() for dev in self.session.devices: manager = DeviceManager(dev) manager.start_measurement(interval=self.interval) self.devices[dev.serial] = manager # Erstes Gerät aktivieren first_serial = self.session.devices[0].serial self.active_device = self.devices[first_serial] # UI aktualisieren self.device_combo.clear() for serial in self.devices: self.device_combo.addItem(serial) self.device_combo.setCurrentText(first_serial) self.session_active = True self.connection_label.setText(f"Connected: {first_serial}") self.status_light.setStyleSheet("background-color: green; border-radius: 10px;") self.start_button.setEnabled(True) # Starte Mess-Update für aktives Gerät self.measurement_thread = self.active_device.measurement_thread self.measurement_thread.update_signal.connect(self.update_measurements) self.measurement_thread.error_signal.connect(self.handle_device_error) except Exception as e: self.handle_device_error(str(e)) def request_usb_permissions(self): """Handle USB permission issues with user interaction""" msg = QMessageBox(self) msg.setIcon(QMessageBox.Critical) msg.setWindowTitle("USB Permission Required") msg.setText("Permission needed to access ADALM1000 devices") msg.setInformativeText( "The application needs elevated privileges to access USB devices.\n\n" "Please choose an option:" ) # Add buttons sudo_button = msg.addButton("Run as Administrator", QMessageBox.ActionRole) udev_button = msg.addButton("Fix Permissions", QMessageBox.ActionRole) cancel_button = msg.addButton(QMessageBox.Cancel) msg.exec_() if msg.clickedButton() == sudo_button: # Restart with sudo QMessageBox.information(self, "Restarting", "The application will restart with administrator privileges") args = sys.argv[:] args.insert(0, sys.executable) os.execvp("sudo", ["sudo"] + args) elif msg.clickedButton() == udev_button: # Create udev rule rule_content = ( '# ADALM1000 USB permissions\n' 'SUBSYSTEM=="usb", ATTR{idVendor}=="064b", ATTR{idProduct}=="784c", MODE="0666"\n' ) try: # Try to create udev rule rule_path = "/etc/udev/rules.d/52-adalm1000.rules" with open(rule_path, "w") as f: f.write(rule_content) # Apply rules os.system("sudo udevadm control --reload-rules") os.system("sudo udevadm trigger") QMessageBox.information(self, "Permissions Fixed", "USB permissions configured. Please reconnect devices.") except Exception as e: QMessageBox.critical(self, "Error", f"Failed to set permissions: {str(e)}\n\n" "Please run these commands manually:\n\n" f"echo '{rule_content}' | sudo tee {rule_path}\n" "sudo udevadm control --reload-rules\n" "sudo udevadm trigger") def manual_device_init(self): """Manual device initialization workaround""" try: # Simulate device detection self.device_combo.clear() self.device_combo.addItem("ADALM1000-1 (Simulated)") self.device_combo.addItem("ADALM1000-2 (Simulated)") # Mock connection self.status_light.setStyleSheet("background-color: orange; border-radius: 10px;") self.connection_label.setText("Simulated Devices") self.session_active = True self.start_button.setEnabled(True) QMessageBox.warning(self, "Simulation Mode", "Using simulated devices - real hardware not detected") except Exception as e: print(f"Manual init failed: {e}") def change_device(self, index): if not self.session_active or index < 0: return serial = self.device_combo.itemText(index) if serial not in self.devices: return # Stoppe aktuelle Messung (UI) was_running = self.test_running if was_running: self.stop_test() # Trenne alten Thread-Slot if hasattr(self, 'measurement_thread'): self.measurement_thread.update_signal.disconnect() # Setze neues aktives Gerät self.active_device = self.devices[serial] self.measurement_thread = self.active_device.measurement_thread self.measurement_thread.update_signal.connect(self.update_measurements) # Aktualisiere UI self.connection_label.setText(f"Connected: {serial}") self.status_bar.showMessage(f"Switched to device {serial}") # Reset Plot + UI mit Daten des neuen Geräts self.update_ui_from_active_device() if was_running: self.start_test() # Nur wenn vorher aktiv def update_ui_from_active_device(self): dev = self.active_device if not dev: return with self.plot_mutex: # Kopiere aktuelle Daten x = list(dev.display_time_data) y_v = list(dev.display_voltage_data) y_c = list(dev.display_current_data) # Aktualisiere Plot self.line_voltage.set_data(x, y_v) self.line_current.set_data(x, y_c) self.auto_scale_axes() self.canvas.draw_idle() # Aktualisiere Labels if dev.voltage_data: v = dev.voltage_data[-1] i = dev.current_data[-1] t = dev.time_data[-1] if dev.time_data else 0 self.voltage_label.setText(f"{v:.4f}") self.current_label.setText(f"{abs(i):.4f}") self.time_label.setText(self.format_time(t)) self.capacity_label.setText(f"{dev.capacity_ah:.4f}") self.energy_label.setText(f"{dev.energy:.4f}") self.cycle_label.setText(str(dev.cycle_count)) self.phase_label.setText(dev.test_phase) @pyqtSlot(float, float, float) def update_measurements(self, voltage, current, current_time): if not self.active_device: return dev = self.active_device with self.plot_mutex: dev.time_data.append(current_time) dev.voltage_data.append(voltage) dev.current_data.append(current) # Aggregation für Anzeige (wie bisher) agg_buf = dev.aggregation_buffer agg_buf['time'].append(current_time) agg_buf['voltage'].append(voltage) agg_buf['current'].append(current) agg_buf['count'] += 1 now = time.time() if agg_buf['count'] >= dev.downsample_factor or now - agg_buf['last_plot_time'] >= 1.0: agg_time = np.mean(agg_buf['time']) agg_voltage = np.mean(agg_buf['voltage']) agg_current = np.mean(agg_buf['current']) dev.display_time_data.append(agg_time) dev.display_voltage_data.append(agg_voltage) dev.display_current_data.append(agg_current) dev.aggregation_buffer = { 'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': now } # UI-Labels aktualisieren self.voltage_label.setText(f"{voltage:.4f}") self.current_label.setText(f"{abs(current):.4f}") self.time_label.setText(self.format_time(current_time)) # Kapazität berechnen if len(dev.time_data) > 1: delta_t = dev.time_data[-1] - dev.time_data[-2] power = voltage * abs(current) dev.capacity_ah += abs(current) * delta_t / 3600 dev.energy += power * delta_t / 3600 self.capacity_label.setText(f"{dev.capacity_ah:.4f}") self.energy_label.setText(f"{dev.energy:.4f}") # Plot nur alle 100ms aktualisieren now = time.time() if not hasattr(self, '_last_plot_update'): self._last_plot_update = 0 if now - self._last_plot_update >= 0.1: self._last_plot_update = now QTimer.singleShot(0, self.update_plot) def adjust_downsampling(self): current_length = len(self.time_data) if current_length > self.max_points_to_keep * 1.5: # Exponentiell erhöhen, aber max. 64 new_factor = min(64, max(1, self.downsample_factor * 2)) elif current_length < self.max_points_to_keep // 2: # Halbieren, aber min. 1 new_factor = max(1, self.downsample_factor // 2) else: return if new_factor != self.downsample_factor: self.downsample_factor = new_factor self.status_bar.showMessage( f"Downsampling: Factor {self.downsample_factor}", 2000) def update_status_and_plot(self): """Combined status and plot update""" self.update_status() self.update_plot() def update_status(self): """Update status information periodically""" now = time.time() # Define 'now' at the start of the method if self.test_running or hasattr(self, 'record_button') and self.record_button.isChecked(): if self.time_data: current_time = self.time_data[-1] if len(self.time_data) > 1: delta_t = self.time_data[-1] - self.time_data[-2] if delta_t > 0: current_current = abs(self.current_data[-1]) self.capacity_ah += current_current * delta_t / 3600 self.capacity_label.setText(f"{self.capacity_ah:.4f}") # Logging (1x per second) if (hasattr(self, 'log_writer') and hasattr(self, 'current_cycle_file') and self.current_cycle_file is not None and not self.current_cycle_file.closed): # Initialize last log time if not exists if not hasattr(self, '_last_log_time'): self._last_log_time = now if self.time_data and (now - self._last_log_time >= 1.0): try: current_time = self.time_data[-1] voltage = self.voltage_data[-1] current = self.current_data[-1] if self.current_mode == "Cycle Test": self.log_writer.writerow([ f"{current_time:.4f}", f"{voltage:.6f}", f"{current:.6f}", self.test_phase, f"{self.capacity_ah:.4f}", f"{self.charge_capacity:.4f}", f"{self.coulomb_efficiency:.1f}", f"{self.cycle_count}" ]) else: self.log_writer.writerow([ f"{current_time:.4f}", f"{voltage:.6f}", f"{current:.6f}", self.test_phase if hasattr(self, 'test_phase') else "Live", f"{self.capacity_ah:.4f}", f"{voltage * current:.4f}", # Power f"{self.energy:.4f}", # Energy f"{self.cycle_count}" if hasattr(self, 'cycle_count') else "1" ]) self.current_cycle_file.flush() self._last_log_time = now except Exception as e: print(f"Error writing to log file: {e}") if hasattr(self, 'current_cycle_file') and self.current_cycle_file is not None: try: self.current_cycle_file.close() except: pass self.record_button.setChecked(False) self.current_cycle_file = None def start_test(self): """Start the selected test mode using the active device""" if not self.active_device: QMessageBox.warning(self, "No Device", "No ADALM1000 device selected.") return dev_manager = self.active_device dev = dev_manager.dev # Clean up any previous test if hasattr(self, 'test_sequence_worker') and self.test_sequence_worker is not None: try: self.test_sequence_worker.stop() except: pass self.test_sequence_worker.deleteLater() if hasattr(self, 'test_sequence_thread') and self.test_sequence_thread is not None: self.test_sequence_thread.quit() self.test_sequence_thread.wait(500) self.test_sequence_thread.deleteLater() del self.test_sequence_thread if hasattr(self, 'discharge_worker') and self.discharge_worker is not None: try: self.discharge_worker.stop() except: pass self.discharge_worker.deleteLater() if hasattr(self, 'discharge_thread') and self.discharge_thread is not None: self.discharge_thread.quit() self.discharge_thread.wait(500) self.discharge_thread.deleteLater() del self.discharge_thread if hasattr(self, 'charge_worker') and self.charge_worker is not None: try: self.charge_worker.stop() except: pass self.charge_worker.deleteLater() if hasattr(self, 'charge_thread') and self.charge_thread is not None: self.charge_thread.quit() self.charge_thread.wait(500) self.charge_thread.deleteLater() del self.charge_thread # Reset test state for active device self.reset_test() # Reset measurement thread timing dev_manager.measurement_thread.start_time = time.time() dev_manager.measurement_thread.voltage_window.clear() dev_manager.measurement_thread.current_window.clear() with dev_manager.measurement_thread.measurement_queue.mutex: dev_manager.measurement_thread.measurement_queue.queue.clear() # Reset data buffers dev_manager.time_data.clear() dev_manager.voltage_data.clear() dev_manager.current_data.clear() dev_manager.display_time_data.clear() dev_manager.display_voltage_data.clear() dev_manager.display_current_data.clear() dev_manager.aggregation_buffer = { 'time': [], 'voltage': [], 'current': [], 'count': 0, 'last_plot_time': 0 } # Reset device state try: dev.channels['A'].mode = pysmu.Mode.HI_Z dev.channels['A'].constant(0) dev.channels['B'].mode = pysmu.Mode.HI_Z except Exception as e: QMessageBox.critical(self, "Device Error", f"Failed to reset device: {e}") return # Reset test variables dev_manager.capacity_ah = 0.0 dev_manager.energy = 0.0 dev_manager.charge_capacity = 0.0 dev_manager.coulomb_efficiency = 0.0 dev_manager.cycle_count = 0 dev_manager.start_time = time.time() dev_manager.test_phase = "Running" # Set global state self.test_running = True self.request_stop = False # Update UI self.phase_label.setText(dev_manager.test_phase) self.start_button.setEnabled(False) self.stop_button.setEnabled(True) # Get parameters from UI try: self.capacity = float(self.capacity_input.text()) self.c_rate = float(self.c_rate_input.text()) test_current = self.c_rate * self.capacity if test_current > 0.2: raise ValueError("Current must be ≤ 200mA (0.2A) for ADALM1000") except ValueError as e: QMessageBox.critical(self, "Input Error", str(e)) self.stop_test() return # Create log file (now includes device serial) if not self.create_cycle_log_file(): self.stop_test() return # Start the appropriate test if self.current_mode == "Cycle Test": try: self.charge_cutoff = float(self.charge_cutoff_input.text()) self.discharge_cutoff = float(self.discharge_cutoff_input.text()) self.rest_time = float(self.rest_time_input.text()) if self.charge_cutoff <= self.discharge_cutoff: raise ValueError("Charge cutoff must be higher than discharge cutoff") # Start test sequence self.test_sequence_thread = QThread() self.test_sequence_worker = TestSequenceWorker( dev, test_current, self.charge_cutoff, self.discharge_cutoff, self.rest_time, self.continuous_mode_check.isChecked(), self ) self.test_sequence_worker.moveToThread(self.test_sequence_thread) self.test_sequence_worker.update_phase.connect(self.update_test_phase) self.test_sequence_worker.update_status.connect(self.status_bar.showMessage) self.test_sequence_worker.test_completed.connect(self.finalize_test) self.test_sequence_worker.error_occurred.connect(self.handle_test_error) self.test_sequence_worker.finished.connect(self.test_sequence_thread.quit) self.test_sequence_worker.finished.connect(self.test_sequence_worker.deleteLater) self.test_sequence_thread.finished.connect(self.test_sequence_thread.deleteLater) self.test_sequence_thread.start() QTimer.singleShot(0, self.test_sequence_worker.run) self.status_bar.showMessage(f"Cycle test started | Device: {dev.serial} | Current: {test_current:.4f}A") except Exception as e: QMessageBox.critical(self, "Error", str(e)) self.stop_test() elif self.current_mode == "Discharge Test": try: self.discharge_cutoff = float(self.discharge_cutoff_input.text()) self.discharge_thread = QThread() self.discharge_worker = DischargeWorker(dev, test_current, self.discharge_cutoff, self) self.discharge_worker.moveToThread(self.discharge_thread) self.discharge_worker.update_status.connect(self.status_bar.showMessage) self.discharge_worker.test_completed.connect(self.finalize_test) self.discharge_worker.error_occurred.connect(self.handle_test_error) self.discharge_worker.finished.connect(self.discharge_thread.quit) self.discharge_worker.finished.connect(self.discharge_worker.deleteLater) self.discharge_thread.finished.connect(self.discharge_thread.deleteLater) self.discharge_thread.start() QTimer.singleShot(0, self.discharge_worker.run) self.status_bar.showMessage(f"Discharge test started | Device: {dev.serial} | Current: {test_current:.4f}A") except Exception as e: QMessageBox.critical(self, "Error", str(e)) self.stop_test() elif self.current_mode == "Charge Test": try: self.charge_cutoff = float(self.charge_cutoff_input.text()) self.charge_thread = QThread() self.charge_worker = ChargeWorker(dev, test_current, self.charge_cutoff, self) self.charge_worker.moveToThread(self.charge_thread) self.charge_worker.update_status.connect(self.status_bar.showMessage) self.charge_worker.test_completed.connect(self.finalize_test) self.charge_worker.error_occurred.connect(self.handle_test_error) self.charge_worker.finished.connect(self.charge_thread.quit) self.charge_worker.finished.connect(self.charge_worker.deleteLater) self.charge_thread.finished.connect(self.charge_thread.deleteLater) self.charge_thread.start() QTimer.singleShot(0, self.charge_worker.run) self.status_bar.showMessage(f"Charge test started | Device: {dev.serial} | Current: {test_current:.4f}A") except Exception as e: QMessageBox.critical(self, "Error", str(e)) self.stop_test() elif self.current_mode == "Live Monitoring": self.start_live_monitoring() def start_cycle_test(self): """Start the battery cycle test""" # Clean up any previous test if hasattr(self, 'test_sequence_worker'): try: self.test_sequence_worker.stop() except: pass self.test_sequence_worker.deleteLater() if hasattr(self, 'test_sequence_thread'): self.test_sequence_thread.quit() self.test_sequence_thread.wait() self.test_sequence_thread.deleteLater() del self.test_sequence_thread self.reset_test() self.reset_plot() if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() # Reset stop flag self.request_stop = False if not self.test_running: try: # Get parameters from UI self.capacity = float(self.capacity_input.text()) self.charge_cutoff = float(self.charge_cutoff_input.text()) self.discharge_cutoff = float(self.discharge_cutoff_input.text()) self.rest_time = float(self.rest_time_input.text()) self.c_rate = float(self.c_rate_input.text()) # Validate inputs if self.capacity <= 0: raise ValueError("Battery capacity must be positive") if self.charge_cutoff <= self.discharge_cutoff: raise ValueError("Charge cutoff must be higher than discharge cutoff") if self.c_rate <= 0: raise ValueError("C-rate must be positive") test_current = self.c_rate * self.capacity if test_current > 0.2: raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000") # Clear ALL previous data completely with self.plot_mutex: self.time_data.clear() self.voltage_data.clear() self.current_data.clear() self.phase_data.clear() # Reset capacities and timing self.start_time = time.time() self.last_update_time = self.start_time self.capacity_ah = 0.0 self.charge_capacity = 0.0 self.coulomb_efficiency = 0.0 self.cycle_count = 0 self.energy = 0.0 # Reset measurement thread's timer and queues if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() self.measurement_thread.voltage_window.clear() self.measurement_thread.current_window.clear() with self.measurement_thread.measurement_queue.mutex: self.measurement_thread.measurement_queue.queue.clear() # Reset plot completely self.reset_plot() # Start test self.test_running = True self.start_time = time.time() self.last_update_time = time.time() self.test_phase = "Initial Discharge" self.phase_label.setText(self.test_phase) self.start_button.setEnabled(False) self.stop_button.setEnabled(True) self.status_bar.showMessage(f"Cycle test started | Current: {test_current:.4f}A") # Create log file self.create_cycle_log_file() # Start test sequence in a QThread self.test_sequence_thread = QThread() self.test_sequence_worker = TestSequenceWorker( self.active_device.dev, test_current, self.charge_cutoff, self.discharge_cutoff, self.rest_time, self.continuous_mode_check.isChecked(), self # Pass reference to main window for callbacks ) self.test_sequence_worker.moveToThread(self.test_sequence_thread) # Connect signals self.test_sequence_worker.update_phase.connect(self.update_test_phase) self.test_sequence_worker.update_status.connect(self.status_bar.showMessage) self.test_sequence_worker.test_completed.connect(self.finalize_test) self.test_sequence_worker.error_occurred.connect(self.handle_test_error) self.test_sequence_worker.finished.connect(self.test_sequence_thread.quit) self.test_sequence_worker.finished.connect(self.test_sequence_worker.deleteLater) self.test_sequence_thread.finished.connect(self.test_sequence_thread.deleteLater) # Start the thread and the worker's run method self.test_sequence_thread.start() QTimer.singleShot(0, self.test_sequence_worker.run) except Exception as e: QMessageBox.critical(self, "Error", str(e)) # Ensure buttons are in correct state if error occurs self.start_button.setEnabled(True) self.stop_button.setEnabled(False) def start_discharge_test(self): """Start the battery discharge test""" # Clean up any previous test self.reset_test() # löscht time_data, voltage_data, current_data, display_*, phase_data self.reset_plot() if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() if hasattr(self, 'discharge_worker'): try: self.discharge_worker.stop() except: pass self.discharge_worker.deleteLater() if hasattr(self, 'discharge_thread'): self.discharge_thread.quit() self.discharge_thread.wait() # warte unbegrenzt, bis er wirklich fertig ist self.discharge_thread.deleteLater() del self.discharge_thread # Reset stop flag self.request_stop = False if not self.test_running: try: # Get parameters from UI self.capacity = float(self.capacity_input.text()) self.discharge_cutoff = float(self.discharge_cutoff_input.text()) self.c_rate = float(self.c_rate_input.text()) # Validate inputs if self.capacity <= 0: raise ValueError("Battery capacity must be positive") if self.c_rate <= 0: raise ValueError("C-rate must be positive") test_current = self.c_rate * self.capacity if test_current > 0.2: raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000") # Clear ALL previous data completely with self.plot_mutex: self.time_data.clear() self.voltage_data.clear() self.current_data.clear() # Reset capacities and timing self.start_time = time.time() self.last_update_time = self.start_time self.capacity_ah = 0.0 self.energy = 0.0 self.cycle_count = 1 # Reset measurement thread's timer and queues if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() self.measurement_thread.voltage_window.clear() self.measurement_thread.current_window.clear() with self.measurement_thread.measurement_queue.mutex: self.measurement_thread.measurement_queue.queue.clear() # Reset plot completely self.reset_plot() # Start test self.test_running = True self.start_time = time.time() self.last_update_time = time.time() self.test_phase = "Discharge" self.phase_label.setText(self.test_phase) self.start_button.setEnabled(False) self.stop_button.setEnabled(True) self.status_bar.showMessage(f"Discharge started | Current: {test_current:.4f}A") # Create log file self.create_cycle_log_file() # Start discharge worker in a QThread self.discharge_thread = QThread() self.discharge_worker = DischargeWorker( self.active_device.dev, test_current, self.discharge_cutoff, self # Pass reference to main window for callbacks ) self.discharge_worker.moveToThread(self.discharge_thread) # Connect signals self.discharge_worker.update_status.connect(self.status_bar.showMessage) self.discharge_worker.test_completed.connect(self.finalize_test) self.discharge_worker.error_occurred.connect(self.handle_test_error) self.discharge_worker.finished.connect(self.discharge_thread.quit) self.discharge_worker.finished.connect(self.discharge_worker.deleteLater) self.discharge_thread.finished.connect(self.discharge_thread.deleteLater) # Start the thread and the worker's run method self.discharge_thread.start() QTimer.singleShot(0, self.discharge_worker.run) except Exception as e: QMessageBox.critical(self, "Error", str(e)) # Ensure buttons are in correct state if error occurs self.start_button.setEnabled(True) self.stop_button.setEnabled(False) def start_charge_test(self): """Start the battery charge test""" # Clean up any previous test if hasattr(self, 'charge_worker'): try: self.charge_worker.stop() except: pass self.charge_worker.deleteLater() if hasattr(self, 'charge_thread'): self.charge_thread.quit() self.charge_thread.wait() self.charge_thread.deleteLater() del self.charge_thread self.reset_test() self.reset_plot() if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() # Reset stop flag self.request_stop = False if not self.test_running: try: # Get parameters from UI self.capacity = float(self.capacity_input.text()) self.charge_cutoff = float(self.charge_cutoff_input.text()) self.c_rate = float(self.c_rate_input.text()) # Validate inputs if self.capacity <= 0: raise ValueError("Battery capacity must be positive") if self.c_rate <= 0: raise ValueError("C-rate must be positive") test_current = self.c_rate * self.capacity if test_current > 0.2: raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000") # Clear ALL previous data completely with self.plot_mutex: self.time_data.clear() self.voltage_data.clear() self.current_data.clear() # Reset capacities and timing self.start_time = time.time() self.last_update_time = self.start_time self.capacity_ah = 0.0 self.energy = 0.0 self.cycle_count = 1 # Reset measurement thread if hasattr(self, 'measurement_thread'): self.measurement_thread.start_time = time.time() self.measurement_thread.voltage_window.clear() self.measurement_thread.current_window.clear() with self.measurement_thread.measurement_queue.mutex: self.measurement_thread.measurement_queue.queue.clear() # Reset plot self.reset_plot() # Start test self.test_running = True self.start_time = time.time() self.last_update_time = time.time() self.test_phase = "Charge" self.phase_label.setText(self.test_phase) self.start_button.setEnabled(False) self.stop_button.setEnabled(True) self.status_bar.showMessage(f"Charge started @ {test_current:.3f}A to {self.charge_cutoff}V") # Create log file self.create_cycle_log_file() # Start charge worker in a QThread self.charge_thread = QThread() self.charge_worker = ChargeWorker( self.active_device.dev, test_current, self.charge_cutoff, self ) self.charge_worker.moveToThread(self.charge_thread) # Connect signals self.charge_worker.update_status.connect(self.status_bar.showMessage) self.charge_worker.test_completed.connect(self.finalize_test) self.charge_worker.error_occurred.connect(self.handle_test_error) self.charge_worker.finished.connect(self.charge_thread.quit) self.charge_worker.finished.connect(self.charge_worker.deleteLater) self.charge_thread.finished.connect(self.charge_thread.deleteLater) # Start the thread self.charge_thread.start() QTimer.singleShot(0, self.charge_worker.run) except Exception as e: QMessageBox.critical(self, "Error", str(e)) self.start_button.setEnabled(True) self.stop_button.setEnabled(False) def start_live_monitoring(self): """Start live monitoring mode for the active device""" if not self.active_device: QMessageBox.warning(self, "No Device", "No ADALM1000 selected.") return dev_manager = self.active_device dev = dev_manager.dev try: # Reset test state for active device self.reset_test() # Reset measurement thread timing if hasattr(dev_manager, 'measurement_thread'): dev_manager.measurement_thread.start_time = time.time() dev_manager.measurement_thread.voltage_window.clear() dev_manager.measurement_thread.current_window.clear() with dev_manager.measurement_thread.measurement_queue.mutex: dev_manager.measurement_thread.measurement_queue.queue.clear() # Reset device state dev.channels['A'].mode = pysmu.Mode.HI_Z dev.channels['A'].constant(0) dev.channels['B'].mode = pysmu.Mode.HI_Z # Reset UI self.test_running = True dev_manager.test_phase = "Live Monitoring" self.phase_label.setText(dev_manager.test_phase) self.stop_button.setEnabled(True) self.start_button.setEnabled(False) # Status self.status_bar.showMessage(f"Live monitoring started | Device: {dev.serial}") except Exception as e: self.handle_device_error(f"Failed to start live monitoring: {str(e)}") def create_cycle_log_file(self): """Create a new log file for the current test with device serial in filename""" try: self._last_log_time = time.time() # Schließe vorherige Datei if hasattr(self, 'current_cycle_file') and self.current_cycle_file: try: self.current_cycle_file.close() except Exception as e: print(f"Error closing previous log file: {e}") self.current_cycle_file = None # Stelle sicher, dass Log-Ordner existiert os.makedirs(self.log_dir, exist_ok=True) if not os.access(self.log_dir, os.W_OK): QMessageBox.critical(self, "Error", f"No write permissions in {self.log_dir}") return False # Generiere Timestamp timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") device_serial = self.active_device.serial if self.active_device else "unknown" # Generiere Dateinamen mit Seriennummer if self.current_mode == "Cycle Test": self.filename = os.path.join(self.log_dir, f"battery_cycle_{device_serial}_{timestamp}.csv") elif self.current_mode == "Discharge Test": self.filename = os.path.join(self.log_dir, f"battery_discharge_{device_serial}_{timestamp}.csv") else: # Live Monitoring self.filename = os.path.join(self.log_dir, f"battery_live_{device_serial}_{timestamp}.csv") # Öffne neue Datei try: self.current_cycle_file = open(self.filename, 'w', newline='') test_current = self.c_rate * self.capacity test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A" # Schreibe Header self.current_cycle_file.write(f"# ADALM1000 Battery Test Log - {self.current_mode}\n") self.current_cycle_file.write(f"# Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") self.current_cycle_file.write(f"# Device Serial: {device_serial}\n") self.current_cycle_file.write(f"# Battery Capacity: {self.capacity} Ah\n") if self.current_mode != "Live Monitoring": self.current_cycle_file.write(f"# Test Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n") if self.current_mode == "Cycle Test": self.current_cycle_file.write(f"# Charge Cutoff: {self.charge_cutoff} V\n") self.current_cycle_file.write(f"# Discharge Cutoff: {self.discharge_cutoff} V\n") self.current_cycle_file.write(f"# Rest Time: {self.rest_time} hours\n") elif self.current_mode == "Discharge Test": self.current_cycle_file.write(f"# Discharge Cutoff: {self.discharge_cutoff} V\n") self.current_cycle_file.write(f"# Test Conditions/Chemistry: {test_conditions}\n") self.current_cycle_file.write("#\n") # CSV Writer self.log_writer = csv.writer(self.current_cycle_file) if self.current_mode == "Cycle Test": self.log_writer.writerow([ "Time(s)", "Voltage(V)", "Current(A)", "Phase", "Discharge_Capacity(Ah)", "Charge_Capacity(Ah)", "Coulomb_Eff(%)", "Cycle" ]) else: self.log_writer.writerow([ "Time(s)", "Voltage(V)", "Current(A)", "Phase", "Capacity(Ah)", "Power(W)", "Energy(Wh)", "Cycle" ]) return True except Exception as e: QMessageBox.critical(self, "Error", f"Failed to create log file: {e}") return False except Exception as e: print(f"Error in create_cycle_log_file: {e}") return False def finalize_log_file(self): """Finalize the current log file""" if hasattr(self, 'current_cycle_file') and self.current_cycle_file: try: test_current = self.c_rate * self.capacity test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A" self.current_cycle_file.write("\n# TEST SUMMARY\n") self.current_cycle_file.write(f"# Test Parameters:\n") self.current_cycle_file.write(f"# - Battery Capacity: {self.capacity} Ah\n") if self.current_mode != "Live Monitoring": self.current_cycle_file.write(f"# - Test Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n") if self.current_mode == "Cycle Test": self.current_cycle_file.write(f"# - Charge Cutoff: {self.charge_cutoff} V\n") self.current_cycle_file.write(f"# - Discharge Cutoff: {self.discharge_cutoff} V\n") self.current_cycle_file.write(f"# - Rest Time: {self.rest_time} hours\n") elif self.current_mode == "Discharge Test": self.current_cycle_file.write(f"# - Discharge Cutoff: {self.discharge_cutoff} V\n") self.current_cycle_file.write(f"# - Test Conditions: {test_conditions}\n") self.current_cycle_file.write(f"# Results:\n") if self.current_mode == "Cycle Test": self.current_cycle_file.write(f"# - Cycles Completed: {self.cycle_count}\n") self.current_cycle_file.write(f"# - Final Discharge Capacity: {self.capacity_ah:.4f} Ah\n") self.current_cycle_file.write(f"# - Final Charge Capacity: {self.charge_capacity:.4f} Ah\n") self.current_cycle_file.write(f"# - Coulombic Efficiency: {self.coulomb_efficiency:.1f}%\n") else: self.current_cycle_file.write(f"# - Capacity: {self.capacity_ah:.4f} Ah\n") self.current_cycle_file.write(f"# - Energy: {self.energy:.4f} Wh\n") self.current_cycle_file.close() except Exception as e: print(f"Error closing log file: {e}") finally: self.current_cycle_file = None def format_time(self, seconds): """Convert seconds to hh:mm:ss format""" hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) seconds = int(seconds % 60) return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def stop_test(self): """Request immediate stop of the current test or monitoring""" if not self.test_running: return self.request_stop = True self.test_running = False self.measuring = False # Stop test threads for attr in ['test_sequence_worker', 'discharge_worker', 'charge_worker']: if hasattr(self, attr): worker = getattr(self, attr) try: if worker and not sip.isdeleted(worker): worker.stop() except: pass # Reset UI if self.active_device: self.active_device.test_phase = "Idle" self.phase_label.setText("Idle") self.stop_button.setEnabled(False) self.start_button.setEnabled(True) if self.current_mode == "Live Monitoring": self.status_bar.showMessage("Live monitoring stopped") else: self.status_bar.showMessage("Test stopped by user") def finalize_test(self): """Final cleanup after test completes or is stopped""" try: # 1. Stop any active measurement or test operations self.measuring = False self.test_running = False # 2. Reset device to safe state try: self.active_device.dev.channels['A'].mode = pysmu.Mode.HI_Z self.active_device.dev.channels['A'].constant(0) self.active_device.dev.channels['B'].mode = pysmu.Mode.HI_Z except Exception as e: print(f"Error resetting device in finalize: {e}") # 3. Clean up test sequence thread safely if hasattr(self, 'test_sequence_thread'): try: if self.test_sequence_thread.isRunning(): if hasattr(self, 'test_sequence_worker'): try: self.test_sequence_worker.stop() except RuntimeError: pass self.test_sequence_thread.quit() self.test_sequence_thread.wait(500) except Exception as e: print(f"Error stopping test sequence thread: {e}") finally: if hasattr(self, 'test_sequence_worker'): try: if not sip.isdeleted(self.test_sequence_worker): self.test_sequence_worker.deleteLater() except: pass if hasattr(self, 'test_sequence_thread'): try: if not sip.isdeleted(self.test_sequence_thread): self.test_sequence_thread.deleteLater() except: pass finally: if hasattr(self, 'test_sequence_thread'): del self.test_sequence_thread # 4. Clean up discharge thread safely if hasattr(self, 'discharge_thread'): try: if self.discharge_thread.isRunning(): if hasattr(self, 'discharge_worker'): try: self.discharge_worker.stop() except RuntimeError: pass self.discharge_thread.quit() self.discharge_thread.wait(500) except Exception as e: print(f"Error stopping discharge thread: {e}") finally: if hasattr(self, 'discharge_worker'): try: if not sip.isdeleted(self.discharge_worker): self.discharge_worker.deleteLater() except: pass if hasattr(self, 'discharge_thread'): try: if not sip.isdeleted(self.discharge_thread): self.discharge_thread.deleteLater() except: pass finally: if hasattr(self, 'discharge_thread'): del self.discharge_thread # 5. Clean up charge thread safely (using same pattern as discharge thread) if hasattr(self, 'charge_thread'): try: if self.charge_thread.isRunning(): if hasattr(self, 'charge_worker'): try: self.charge_worker.stop() except RuntimeError: pass self.charge_thread.quit() self.charge_thread.wait(500) except Exception as e: print(f"Error stopping charge thread: {e}") finally: if hasattr(self, 'charge_worker'): try: if not sip.isdeleted(self.charge_worker): self.charge_worker.deleteLater() except: pass if hasattr(self, 'charge_thread'): try: if not sip.isdeleted(self.charge_thread): self.charge_thread.deleteLater() except: pass finally: if hasattr(self, 'charge_thread'): del self.charge_thread # 6. Finalize log file self.finalize_log_file() # 7. Reset UI and state self.request_stop = False self.start_button.setEnabled(True) self.stop_button.setEnabled(False) # 8. Show completion message if test wasn't stopped by user if not self.request_stop: test_current = self.c_rate * self.capacity test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A" if self.current_mode == "Cycle Test": message = ( f"Cycle test completed | " f"Cycle {self.cycle_count} | " f"Capacity: {self.capacity_ah:.4f}Ah | " f"Efficiency: {self.coulomb_efficiency:.1f}%" ) QMessageBox.information( self, "Test Completed", f"Cycle test completed successfully.\n\n" f"Test Parameters:\n" f"- Capacity: {self.capacity} Ah\n" f"- Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n" f"- Charge Cutoff: {self.charge_cutoff} V\n" f"- Discharge Cutoff: {self.discharge_cutoff} V\n" f"- Conditions: {test_conditions}\n\n" f"Results:\n" f"- Cycles: {self.cycle_count}\n" f"- Discharge capacity: {self.capacity_ah:.4f}Ah\n" f"- Coulombic efficiency: {self.coulomb_efficiency:.1f}%" ) elif self.current_mode == "Discharge Test": message = ( f"Discharge completed | " f"Capacity: {self.capacity_ah:.4f}Ah | " f"Energy: {self.energy:.4f}Wh" ) QMessageBox.information( self, "Discharge Completed", f"Discharge test completed successfully.\n\n" f"Test Parameters:\n" f"- Capacity: {self.capacity} Ah\n" f"- Current: {test_current:.4f} A (C/{1/self.c_rate:.1f})\n" f"- Discharge Cutoff: {self.discharge_cutoff} V\n" f"- Conditions: {test_conditions}\n\n" f"Results:\n" f"- Discharge capacity: {self.capacity_ah:.4f}Ah\n" f"- Energy delivered: {self.energy:.4f}Wh" ) self.status_bar.showMessage(message) except Exception as e: print(f"Error in finalize_test: {e}") import traceback traceback.print_exc() # Ensure we don't leave the UI in a locked state self.start_button.setEnabled(True) self.stop_button.setEnabled(False) self.status_bar.showMessage("Error during test finalization") def reset_plot(self): """Completely reset the plot - clears all data and visuals""" # Clear line data self.line_voltage.set_data([], []) self.line_current.set_data([], []) # Reset axes with appropriate ranges voltage_padding = 0.2 min_voltage = 0 max_voltage = 5.0 # Max voltage for ADALM1000 self.ax.set_xlim(0, 10) # Reset X axis self.ax.set_ylim(min_voltage, max_voltage) self.ax.set_xlabel('Time (s)', color=self.fg_color) self.ax.set_ylabel("Voltage (V)", color='#00BFFF') self.ax.set_title('Battery Test', color=self.fg_color) self.ax.tick_params(axis='x', colors=self.fg_color) self.ax.tick_params(axis='y', labelcolor='#00BFFF') self.ax.grid(True, color='#4C566A') # Reset twin axis (current) current_padding = 0.05 self.ax2.set_xlim(0, 10) self.ax2.set_ylim(-0.25 - current_padding, 0.25 + current_padding) self.ax2.set_ylabel("Current (A)", color='r') self.ax2.tick_params(axis='y', labelcolor='r') # Redraw legends self.ax.legend(loc='upper left', bbox_to_anchor=(0.01, 0.99)) self.ax2.legend(loc='upper right', bbox_to_anchor=(0.99, 0.99)) # Force immediate redraw self.canvas.draw() def update_status_and_plot(self): """Combined status and plot update""" self.update_status() self.update_plot() def update_plot(self): """More robust plotting with error handling""" try: # Create local copies of data safely with self.plot_mutex: if not self.display_time_data: return x_data = np.array(self.display_time_data) y1_data = np.array(self.display_voltage_data) y2_data = np.array(self.display_current_data) # Update plot data self.line_voltage.set_data(x_data, y1_data) self.line_current.set_data(x_data, y2_data) # Auto-scale when needed if len(x_data) > 1: self.auto_scale_axes() # Force redraw self.canvas.draw_idle() except Exception as e: print(f"Plot error: {e}") # Attempt to recover self.reset_plot() def auto_scale_axes(self): """Auto-scale plot axes with appropriate padding and strict boundaries""" if not self.time_data: return min_time = 0 max_time = self.time_data[-1] current_xlim = self.ax.get_xlim() if max_time > current_xlim[1] * 0.95: new_max = max_time * 1.05 self.ax.set_xlim(min_time, new_max) self.ax2.set_xlim(min_time, new_max) voltage_padding = 0.2 if self.voltage_data: min_voltage = max(0, min(self.voltage_data) - voltage_padding) max_voltage = min(5.0, max(self.voltage_data) + voltage_padding) current_ylim = self.ax.get_ylim() if (abs(current_ylim[0] - min_voltage) > 0.1 or abs(current_ylim[1] - max_voltage) > 0.1): self.ax.set_ylim(min_voltage, max_voltage) current_padding = 0.05 if self.current_data: min_current = max(-0.25, min(self.current_data) - current_padding) max_current = min(0.25, max(self.current_data) + current_padding) current_ylim2 = self.ax2.get_ylim() if (abs(current_ylim2[0] - min_current) > 0.02 or abs(current_ylim2[1] - max_current) > 0.02): self.ax2.set_ylim(min_current, max_current) @pyqtSlot(str) def handle_device_error(self, error_msg): """Handle device errors gracefully""" self.status_bar.showMessage(f"Device error: {error_msg}") self.status_light.setStyleSheet("background-color: red; border-radius: 10px;") self.session_active = False self.test_running = False self.measuring = False self.start_button.setEnabled(False) self.stop_button.setEnabled(False) # Clear device-specific data ONLY if we have an active device if self.active_device: data = self.active_device with self.plot_mutex: data.time_data.clear() data.voltage_data.clear() data.current_data.clear() self.update_plot() @pyqtSlot(str) def update_test_phase(self, phase_text): """Update the test phase display""" self.test_phase = phase_text self.phase_label.setText(phase_text) @pyqtSlot(str) def handle_test_error(self, error_msg): """Handle errors from the test sequence with complete cleanup""" try: # 1. Notify user QMessageBox.critical(self, "Test Error", f"An error occurred:\n{error_msg}\n\nAttempting to recover...") # 2. Stop all operations self.stop_test() # 3. Reset UI elements if hasattr(self, 'line_voltage'): try: self.line_voltage.set_data([], []) self.line_current.set_data([], []) self.ax.set_xlim(0, 1) self.ax2.set_xlim(0, 1) self.canvas.draw() except Exception as plot_error: print(f"Plot reset error: {plot_error}") # 4. Update status self.status_bar.showMessage(f"Error: {error_msg} - Reconnecting...") self.status_light.setStyleSheet("background-color: orange; border-radius: 10px;") # 5. Attempt recovery QTimer.singleShot(1000, self.attempt_reconnect) # Delay before reconnect except Exception as e: print(f"Error in error handler: {e}") # Fallback - restart application? QMessageBox.critical(self, "Fatal Error", "The application needs to restart due to an unrecoverable error") QTimer.singleShot(1000, self.close) def attempt_reconnect(self): """Attempt to reconnect automatically""" QMessageBox.critical( self, "Device Connection Error", "Could not connect to ADALM1000\n\n" "1. Check USB cable connection\n" "2. The device will attempt to reconnect automatically" ) QTimer.singleShot(1000, self.reconnect_device) def reconnect_device(self): if hasattr(self, 'measurement_thread'): self.measurement_thread.stop() self.measurement_thread.wait(500) try: self.session = PatchedSession(ignore_dataflow=True, queue_size=10000) if not self.session.devices: raise DeviceDisconnectedError("No devices found") new_serials = {dev.serial for dev in self.session.devices} old_serials = set(self.devices.keys()) # Neue hinzufügen for dev in self.session.devices: if dev.serial not in self.devices: manager = DeviceManager(dev) manager.start_measurement(self.interval) self.devices[dev.serial] = manager # Entfernte entfernen for serial in list(self.devices.keys()): if serial not in new_serials: self.devices[serial].stop_measurement() del self.devices[serial] # Aktualisiere UI current_serial = self.active_device.serial if self.active_device else None self.device_combo.clear() for serial in self.devices: self.device_combo.addItem(serial) if current_serial in self.devices: self.device_combo.setCurrentText(current_serial) self.active_device = self.devices[current_serial] else: first = next(iter(self.devices)) self.device_combo.setCurrentText(first) self.active_device = self.devices[first] self.measurement_thread = self.active_device.measurement_thread self.measurement_thread.update_signal.connect(self.update_measurements) self.connection_label.setText(f"Reconnected: {self.active_device.serial}") self.status_bar.showMessage("Reconnected all devices") except Exception as e: QTimer.singleShot(2000, self.reconnect_device) def closeEvent(self, event): """Clean up on window close""" self.test_running = False self.measuring = False self.session_active = False # Stop measurement thread if hasattr(self, 'measurement_thread'): self.measurement_thread.stop() # Stop test sequence thread if hasattr(self, 'test_sequence_thread'): if hasattr(self, 'test_sequence_worker'): self.test_sequence_worker.stop() self.test_sequence_thread.quit() self.test_sequence_thread.wait(500) # Stop discharge thread if hasattr(self, 'discharge_thread'): if hasattr(self, 'discharge_worker'): self.discharge_worker.stop() self.discharge_thread.quit() self.discharge_thread.wait(500) # Clean up device session if hasattr(self, 'session') and self.session: try: self.session.end() except Exception as e: print(f"Error ending session: {e}") event.accept() if __name__ == "__main__": app = QApplication([]) try: window = BatteryTester() window.show() app.exec_() except Exception as e: QMessageBox.critical(None, "Fatal Error", f"Application failed: {str(e)}")