diff --git a/MainCode/adalm1000_logger.py b/MainCode/adalm1000_logger.py index cfd7e92..da2aab1 100644 --- a/MainCode/adalm1000_logger.py +++ b/MainCode/adalm1000_logger.py @@ -4,23 +4,304 @@ import time import csv import threading from datetime import datetime -import tkinter as tk -from tkinter import ttk, messagebox -import pysmu import numpy as np import matplotlib -matplotlib.use('TkAgg') -from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg +matplotlib.use('Qt5Agg') +from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from collections import deque +from queue import Queue, Full, Empty + +from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QGridLayout, QLabel, + QPushButton, QLineEdit, QCheckBox, QFrame, QMessageBox, QFileDialog) +from PyQt5.QtCore import Qt, QTimer, pyqtSignal, pyqtSlot, QObject, QThread +from PyQt5 import sip +import pysmu class DeviceDisconnectedError(Exception): pass -class BatteryTester: - def __init__(self, root): - self._after_ids = set() # Track scheduled callbacks - self._after_lock = threading.Lock() +class MeasurementThread(QThread): + update_signal = pyqtSignal(float, float, float) + error_signal = pyqtSignal(str) + + def __init__(self, device, interval=0.1): + super().__init__() + self.device = device + self.interval = interval + self._running = False + self.filter_window_size = 10 + self.voltage_window = [] + self.current_window = [] + self.start_time = time.time() + self.measurement_queue = Queue(maxsize=1) + + def run(self): + """Continuous measurement loop""" + self._running = True + while self._running: + try: + samples = self.device.read(self.filter_window_size, 500, True) + if not samples: + raise DeviceDisconnectedError("No samples received") + + current_time = time.time() - self.start_time + + # Get voltage from Channel B (HI_Z mode) and current from Channel A + raw_voltage = np.mean([s[1][0] for s in samples]) # Channel B voltage + raw_current = np.mean([s[0][1] for s in samples]) # Channel A current + + # Apply sign correction based on test phase if available + if hasattr(self, 'parent') and hasattr(self.parent, 'test_phase'): + if self.parent.test_phase == "Discharge": + raw_current = -abs(raw_current) + elif self.parent.test_phase == "Charge": + raw_current = abs(raw_current) + + # Update filter windows + self.voltage_window.append(raw_voltage) + self.current_window.append(raw_current) + + if len(self.voltage_window) > self.filter_window_size: + self.voltage_window.pop(0) + self.current_window.pop(0) + + voltage = np.mean(self.voltage_window) + current = np.mean(self.current_window) + + # Validate measurements + if not (0 <= voltage <= 5.0): + raise ValueError(f"Invalid voltage: {voltage}V") + if not (-0.25 <= current <= 0.25): + raise ValueError(f"Invalid current: {current}A") + + # Emit update + self.update_signal.emit(voltage, current, current_time) + + # Store measurement + try: + self.measurement_queue.put_nowait((voltage, current)) + except Full: + pass + + time.sleep(max(0.05, self.interval)) + + except Exception as e: + self.error_signal.emit(f"Read error: {str(e)}") + time.sleep(1) + continue + + def stop(self): + self._running = False + self.wait(500) + + +class TestSequenceWorker(QObject): + # ... keep all existing methods except the run() method ... + + def run(self): + """Main test sequence loop""" + try: + while self._running and (self.continuous_mode or self.parent.cycle_count == 0): + # Reset stop request at start of each cycle + self.parent.request_stop = False + self.parent.cycle_count += 1 + + # 1. Charge phase (constant current) + self.charge_phase() + if not self._running or self.parent.request_stop: + break + + # 2. Rest period after charge + self.rest_phase("Post-Charge") + if not self._running or self.parent.request_stop: + break + + # 3. Discharge phase (capacity measurement) + self.discharge_phase() + if not self._running or self.parent.request_stop: + break + + # 4. Rest period after discharge (only if not stopping) + if self._running and not self.parent.request_stop: + self.rest_phase("Post-Discharge") + + # Calculate Coulomb efficiency if not stopping + if not self.parent.request_stop and self.parent.charge_capacity > 0: + self.parent.coulomb_efficiency = (self.parent.capacity_ah / self.parent.charge_capacity) * 100 + + # Test completed + self.test_completed.emit() + + except Exception as e: + self.error_occurred.emit(f"Test sequence error: {str(e)}") + finally: + self.finished.emit() + +class TestSequenceWorker(QObject): + finished = pyqtSignal() + update_phase = pyqtSignal(str) + update_status = pyqtSignal(str) + test_completed = pyqtSignal() + error_occurred = pyqtSignal(str) + + def __init__(self, device, test_current, charge_cutoff, discharge_cutoff, rest_time, continuous_mode, parent): + super().__init__() + self.device = device + self.test_current = test_current + self.charge_cutoff = charge_cutoff + self.discharge_cutoff = discharge_cutoff + self.rest_time = rest_time * 3600 # Convert hours to seconds + self.continuous_mode = continuous_mode + self.parent = parent + self._running = True + self.voltage_timeout = 0.5 # seconds + + def get_latest_measurement(self): + """Thread-safe measurement reading with timeout""" + try: + return self.parent.measurement_thread.measurement_queue.get( + timeout=self.voltage_timeout + ) + except Empty: + return (None, None) # Return tuple for unpacking + + def charge_phase(self): + """Handle the battery charging phase""" + self.update_phase.emit("Charge") + self.update_status.emit(f"Charging to {self.charge_cutoff}V @ {self.test_current:.3f}A") + + try: + # Configure channels - Channel A sources current, Channel B measures voltage + self.device.channels['B'].mode = pysmu.Mode.HI_Z + self.device.channels['A'].mode = pysmu.Mode.SIMV + self.device.channels['A'].constant(self.test_current) + + # Small delay to allow current to stabilize + time.sleep(0.1) + + while self._running: + voltage, current = self.get_latest_measurement() + if voltage is None: + continue + + # Update parent's data for logging/display + with self.parent.plot_mutex: + if len(self.parent.voltage_data) > 0: + self.parent.voltage_data[-1] = voltage + self.parent.current_data[-1] = current + + if voltage >= self.charge_cutoff: + break + + time.sleep(0.1) + + finally: + self.device.channels['A'].mode = pysmu.Mode.HI_Z + self.device.channels['A'].constant(0) + + def discharge_phase(self): + """Handle the battery discharging phase""" + voltage, _ = self.get_latest_measurement() + if voltage is not None and voltage <= self.discharge_cutoff: + self.update_status.emit(f"Already below discharge cutoff ({voltage:.3f}V ≤ {self.discharge_cutoff}V)") + return + self.update_phase.emit("Discharge") + self.update_status.emit(f"Discharging to {self.discharge_cutoff}V @ {self.test_current:.3f}A") + + try: + # Configure channels - Channel A sinks current, Channel B measures voltage + self.device.channels['B'].mode = pysmu.Mode.HI_Z + self.device.channels['A'].mode = pysmu.Mode.SIMV + self.device.channels['A'].constant(-self.test_current) + + # Small delay to allow current to stabilize + time.sleep(0.1) + + while self._running: + voltage, current = self.get_latest_measurement() + if voltage is None: + continue + + # Update parent's data for logging/display + with self.parent.plot_mutex: + if len(self.parent.voltage_data) > 0: + self.parent.voltage_data[-1] = voltage + self.parent.current_data[-1] = current + + if voltage <= self.discharge_cutoff: + break + + time.sleep(0.1) + + finally: + self.device.channels['A'].mode = pysmu.Mode.HI_Z + self.device.channels['A'].constant(0) + + def rest_phase(self, phase_name): + """Handle rest period between phases""" + self.update_phase.emit(f"Resting ({phase_name})") + rest_end = time.time() + self.rest_time + + while time.time() < rest_end and self._running: + time_left = max(0, rest_end - time.time()) + self.update_status.emit(f"Resting | Time left: {time_left/60:.1f} min") + time.sleep(1) + + def stop(self): + """Request the thread to stop""" + self._running = False + try: + self.device.channels['A'].mode = pysmu.Mode.HI_Z + self.device.channels['A'].constant(0) + self.device.channels['B'].mode = pysmu.Mode.HI_Z + except Exception as e: + print(f"Error stopping device: {e}") + + def run(self): + """Main test sequence loop""" + try: + while self._running and (self.continuous_mode or self.parent.cycle_count == 0): + # Reset stop request at start of each cycle + self.parent.request_stop = False + self.parent.cycle_count += 1 + + # 1. Charge phase (constant current) + self.charge_phase() + if not self._running or self.parent.request_stop: + break + + # 2. Rest period after charge + self.rest_phase("Post-Charge") + if not self._running or self.parent.request_stop: + break + + # 3. Discharge phase (capacity measurement) + self.discharge_phase() + if not self._running or self.parent.request_stop: + break + + # 4. Rest period after discharge (only if not stopping) + if self._running and not self.parent.request_stop: + self.rest_phase("Post-Discharge") + + # Calculate Coulomb efficiency if not stopping + if not self.parent.request_stop and self.parent.charge_capacity > 0: + self.parent.coulomb_efficiency = (self.parent.capacity_ah / self.parent.charge_capacity) * 100 + + # Test completed + self.test_completed.emit() + + except Exception as e: + self.error_occurred.emit(f"Test sequence error: {str(e)}") + finally: + self.finished.emit() + +class BatteryTester(QMainWindow): + def __init__(self): + self.plot_mutex = threading.Lock() + super().__init__() + # Color scheme self.bg_color = "#2E3440" self.fg_color = "#D8DEE9" @@ -28,13 +309,6 @@ class BatteryTester: self.warning_color = "#BF616A" self.success_color = "#A3BE8C" - # Main window configuration - self.root = root - self.root.title("ADALM1000 - Battery Capacity Tester (CC Test)") - self.root.geometry("1000x800") - self.root.minsize(800, 700) - self.root.configure(bg=self.bg_color) - # Device and measurement state self.session_active = False self.measuring = False @@ -45,20 +319,6 @@ class BatteryTester: self.log_dir = os.path.expanduser("~/adalm1000/logs") os.makedirs(self.log_dir, exist_ok=True) - # Battery test parameters - self.capacity = tk.DoubleVar(value=0.2) # Battery capacity in Ah - self.charge_cutoff = tk.DoubleVar(value=1.43) # Charge cutoff voltage - self.discharge_cutoff = tk.DoubleVar(value=0.9) # Discharge cutoff voltage - self.rest_time = tk.DoubleVar(value=0.25) # Rest time in hours - self.c_rate = tk.DoubleVar(value=0.1) # C-rate for test (default C/5 = 0.2) - - # Test progress tracking - self.test_phase = tk.StringVar(value="Idle") - self.capacity_ah = tk.DoubleVar(value=0.0) - self.charge_capacity = tk.DoubleVar(value=0.0) # capacity tracking - self.coulomb_efficiency = tk.DoubleVar(value=0.0) # efficiency calculation - self.cycle_count = tk.IntVar(value=0) # cycle counting - # Data buffers self.time_data = deque() self.voltage_data = deque() @@ -69,157 +329,273 @@ class BatteryTester: self.setup_ui() self.init_device() - # Ensure proper cleanup - self.root.protocol("WM_DELETE_WINDOW", self.on_close) + # Set window properties + self.setWindowTitle("ADALM1000 - Battery Capacity Tester (CC Test)") + self.resize(1000, 800) + self.setMinimumSize(800, 700) + + # Status update timer + self.status_timer = QTimer() + self.status_timer.timeout.connect(self.update_status) + self.status_timer.start(1000) # Update every second def setup_ui(self): """Configure the user interface""" - self.style = ttk.Style() - self.style.theme_use('clam') + # Main widget and layout + self.central_widget = QWidget() + self.setCentralWidget(self.central_widget) + self.main_layout = QVBoxLayout(self.central_widget) + self.main_layout.setContentsMargins(10, 10, 10, 10) - # Configure styles - self.style.configure('.', background=self.bg_color, foreground=self.fg_color) - self.style.configure('TFrame', background=self.bg_color) - self.style.configure('TLabel', background=self.bg_color, foreground=self.fg_color) - self.style.configure('TButton', background=self.accent_color, foreground=self.fg_color, - padding=6, font=('Helvetica', 10, 'bold')) - self.style.map('TButton', - background=[('active', self.accent_color), ('disabled', '#4C566A')], - foreground=[('active', self.fg_color), ('disabled', '#D8DEE9')]) - self.style.configure('TEntry', fieldbackground="#3B4252", foreground=self.fg_color) - self.style.configure('Header.TLabel', font=('Helvetica', 14, 'bold'), foreground=self.accent_color) - self.style.configure('Value.TLabel', font=('Helvetica', 12, 'bold')) - self.style.configure('Status.TLabel', font=('Helvetica', 10)) - self.style.configure('Warning.TButton', background=self.warning_color) - self.style.configure('Success.TButton', background=self.success_color) - - # Main layout - self.content_frame = ttk.Frame(self.root) - self.content_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) - # Header area - header_frame = ttk.Frame(self.content_frame) - header_frame.pack(fill=tk.X, pady=(0, 20)) + header_frame = QFrame() + header_frame.setFrameShape(QFrame.NoFrame) + header_layout = QHBoxLayout(header_frame) + header_layout.setContentsMargins(0, 0, 0, 0) - ttk.Label(header_frame, text="ADALM1000 Battery Capacity Tester (CC Test)", style='Header.TLabel').pack(side=tk.LEFT) + self.title_label = QLabel("ADALM1000 Battery Capacity Tester (CC Test)") + self.title_label.setStyleSheet(f"font-size: 14pt; font-weight: bold; color: {self.accent_color};") + header_layout.addWidget(self.title_label, 1) # Status indicator - self.status_light = tk.Canvas(header_frame, width=20, height=20, bg=self.bg_color, bd=0, highlightthickness=0) - self.status_light.pack(side=tk.RIGHT, padx=10) - self.status_indicator = self.status_light.create_oval(2, 2, 18, 18, fill='red') - self.connection_label = ttk.Label(header_frame, text="Disconnected") - self.connection_label.pack(side=tk.RIGHT) + self.status_light = QLabel() + self.status_light.setFixedSize(20, 20) + self.status_light.setStyleSheet("background-color: red; border-radius: 10px;") + header_layout.addWidget(self.status_light) + + self.connection_label = QLabel("Disconnected") + header_layout.addWidget(self.connection_label) # Reconnect button - self.reconnect_btn = ttk.Button(header_frame, text="Reconnect", command=self.reconnect_device) - self.reconnect_btn.pack(side=tk.RIGHT, padx=10) + self.reconnect_btn = QPushButton("Reconnect") + self.reconnect_btn.clicked.connect(self.reconnect_device) + header_layout.addWidget(self.reconnect_btn) + + self.main_layout.addWidget(header_frame) # Measurement display - display_frame = ttk.LabelFrame(self.content_frame, text=" Live Measurements ", padding=15) - display_frame.pack(fill=tk.BOTH, expand=False) + display_frame = QFrame() + display_frame.setFrameShape(QFrame.StyledPanel) + display_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}") + display_layout = QGridLayout(display_frame) # Measurement values measurement_labels = [ - ("Voltage (V)", "V"), - ("Current (A)", "A"), - ("Test Phase", ""), - ("Elapsed Time", "s"), - ("Discharge Capacity", "Ah"), - ("Charge Capacity", "Ah"), - ("Coulomb Eff.", "%"), - ("Cycle Count", ""), + ("Voltage", "V"), ("Current", "A"), ("Test Phase", ""), + ("Elapsed Time", "s"), ("Discharge Capacity", "Ah"), ("Charge Capacity", "Ah"), + ("Coulomb Eff.", "%"), ("Cycle Count", ""), ("Battery Temp", "°C"), + ("Internal R", "Ω"), ("Power", "W"), ("Energy", "Wh") ] + # 4 Zeilen × 3 Spalten Anordnung for i, (label, unit) in enumerate(measurement_labels): - ttk.Label(display_frame, text=f"{label}:", font=('Helvetica', 11)).grid(row=i//2, column=(i%2)*2, sticky=tk.W, pady=5) - value_label = ttk.Label(display_frame, text="0.000", style='Value.TLabel') - value_label.grid(row=i//2, column=(i%2)*2+1, sticky=tk.W, padx=10) + row = i // 3 # 0-3 (4 Zeilen) + col = (i % 3) * 3 # 0, 3, 6 (3 Spalten mit je 3 Widgets) + + # Label für den Messwertnamen + lbl = QLabel(f"{label}:") + lbl.setStyleSheet(f"color: {self.fg_color}; font-size: 11px;") + display_layout.addWidget(lbl, row, col) + + # Label für den Messwert + value_lbl = QLabel("0.000") + value_lbl.setStyleSheet(f""" + color: {self.fg_color}; + font-weight: bold; + font-size: 12px; + min-width: 60px; + """) + display_layout.addWidget(value_lbl, row, col + 1) + + # Einheit falls vorhanden if unit: - ttk.Label(display_frame, text=unit).grid(row=i//2, column=(i%2)*2+2, sticky=tk.W) + unit_lbl = QLabel(unit) + unit_lbl.setStyleSheet(f"color: {self.fg_color}; font-size: 11px;") + display_layout.addWidget(unit_lbl, row, col + 2) - if i == 0: - self.voltage_label = value_label - elif i == 1: - self.current_label = value_label - elif i == 2: - self.phase_label = value_label - elif i == 3: - self.time_label = value_label - elif i == 4: - self.capacity_label = value_label - elif i == 5: - self.charge_capacity_label = value_label - elif i == 6: - self.efficiency_label = value_label - elif i == 7: - self.cycle_label = value_label + # Spaltenabstände anpassen + for i in range(9): # 3 Spalten × 3 Widgets + display_layout.setColumnStretch(i, 1 if i % 3 == 1 else 0) # Nur Wert-Spalten dehnen + + # Referenzen aktualisieren + self.voltage_label = display_layout.itemAtPosition(0, 1).widget() + self.current_label = display_layout.itemAtPosition(0, 4).widget() + self.phase_label = display_layout.itemAtPosition(0, 7).widget() + self.time_label = display_layout.itemAtPosition(1, 1).widget() + self.capacity_label = display_layout.itemAtPosition(1, 4).widget() + self.charge_capacity_label = display_layout.itemAtPosition(1, 7).widget() + self.efficiency_label = display_layout.itemAtPosition(2, 1).widget() + self.cycle_label = display_layout.itemAtPosition(2, 4).widget() + self.temp_label = display_layout.itemAtPosition(2, 7).widget() + self.resistance_label = display_layout.itemAtPosition(3, 1).widget() + self.power_label = display_layout.itemAtPosition(3, 4).widget() + self.energy_label = display_layout.itemAtPosition(3, 7).widget() + + self.main_layout.addWidget(display_frame) # Control area - controls_frame = ttk.Frame(self.content_frame) - controls_frame.pack(fill=tk.X, pady=(10, 10), padx=0) - + controls_frame = QFrame() + controls_frame.setFrameShape(QFrame.NoFrame) + controls_layout = QHBoxLayout(controls_frame) + controls_layout.setContentsMargins(0, 0, 0, 0) + # Parameters frame - params_frame = ttk.LabelFrame(controls_frame, text="Test Parameters", padding=10) - params_frame.pack(side=tk.LEFT, fill=tk.X, expand=True) - + params_frame = QFrame() + params_frame.setFrameShape(QFrame.StyledPanel) + params_frame.setStyleSheet(f"QFrame {{ border: 1px solid {self.accent_color}; border-radius: 5px; }}") + params_layout = QGridLayout(params_frame) + # Battery capacity - ttk.Label(params_frame, text="Battery Capacity (Ah):").grid(row=0, column=0, sticky=tk.W) - ttk.Entry(params_frame, textvariable=self.capacity, width=6).grid(row=0, column=1, padx=5, sticky=tk.W) - + self.capacity = 0.2 + self.capacity_label_input = QLabel("Battery Capacity (Ah):") + self.capacity_label_input.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(self.capacity_label_input, 0, 0) + self.capacity_input = QLineEdit("0.2") + self.capacity_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") + self.capacity_input.setFixedWidth(60) + params_layout.addWidget(self.capacity_input, 0, 1) + # Charge cutoff - ttk.Label(params_frame, text="Charge Cutoff (V):").grid(row=1, column=0, sticky=tk.W) - ttk.Entry(params_frame, textvariable=self.charge_cutoff, width=6).grid(row=1, column=1, padx=5, sticky=tk.W) - + self.charge_cutoff = 1.43 + self.charge_cutoff_label = QLabel("Charge Cutoff (V):") + self.charge_cutoff_label.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(self.charge_cutoff_label, 1, 0) + self.charge_cutoff_input = QLineEdit("1.43") + self.charge_cutoff_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") + self.charge_cutoff_input.setFixedWidth(60) + params_layout.addWidget(self.charge_cutoff_input, 1, 1) + # Discharge cutoff - ttk.Label(params_frame, text="Discharge Cutoff (V):").grid(row=2, column=0, sticky=tk.W) - ttk.Entry(params_frame, textvariable=self.discharge_cutoff, width=6).grid(row=2, column=1, padx=5, sticky=tk.W) - + self.discharge_cutoff = 0.9 + self.discharge_cutoff_label = QLabel("Discharge Cutoff (V):") + self.discharge_cutoff_label.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(self.discharge_cutoff_label, 2, 0) + self.discharge_cutoff_input = QLineEdit("0.9") + self.discharge_cutoff_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") + self.discharge_cutoff_input.setFixedWidth(60) + params_layout.addWidget(self.discharge_cutoff_input, 2, 1) + # Rest time - ttk.Label(params_frame, text="Rest Time (hours):").grid(row=3, column=0, sticky=tk.W) - ttk.Entry(params_frame, textvariable=self.rest_time, width=6).grid(row=3, column=1, padx=5, sticky=tk.W) - - # C-rate for test (C/5 by default) - ttk.Label(params_frame, text="Test C-rate:").grid(row=0, column=2, sticky=tk.W, padx=(10,0)) - ttk.Entry(params_frame, textvariable=self.c_rate, width=4).grid(row=0, column=3, padx=5, sticky=tk.W) - ttk.Label(params_frame, text="(e.g., 0.2 for C/5)").grid(row=0, column=4, sticky=tk.W) - - # Start/Stop buttons - button_frame = ttk.Frame(controls_frame) - button_frame.pack(side=tk.RIGHT, padx=10) + self.rest_time = 0.25 + self.rest_time_label = QLabel("Rest Time (hours):") + self.rest_time_label.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(self.rest_time_label, 3, 0) + self.rest_time_input = QLineEdit("0.25") + self.rest_time_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") + self.rest_time_input.setFixedWidth(60) + params_layout.addWidget(self.rest_time_input, 3, 1) - self.start_button = ttk.Button(button_frame, text="START TEST", command=self.start_test, style='TButton') - self.start_button.pack(side=tk.TOP, pady=5) + # C-rate for test + self.c_rate = 0.1 + self.c_rate_label = QLabel("Test C-rate:") + self.c_rate_label.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(self.c_rate_label, 0, 2) + self.c_rate_input = QLineEdit("0.1") + self.c_rate_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") + self.c_rate_input.setFixedWidth(40) + params_layout.addWidget(self.c_rate_input, 0, 3) - self.stop_button = ttk.Button(button_frame, text="STOP TEST", command=self.stop_test, style='Warning.TButton', state=tk.DISABLED) - self.stop_button.pack(side=tk.TOP, pady=5) + c_rate_note = QLabel("(e.g., 0.2 for C/5)") + c_rate_note.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(c_rate_note, 0, 4) + + controls_layout.addWidget(params_frame, 1) + + # Test conditions input + self.test_conditions_label = QLabel("Test Conditions/Chemistry:") + self.test_conditions_label.setStyleSheet(f"color: {self.fg_color};") + params_layout.addWidget(self.test_conditions_label, 4, 0) + self.test_conditions_input = QLineEdit("") + self.test_conditions_input.setStyleSheet(f"background-color: #3B4252; color: {self.fg_color};") + self.test_conditions_input.setFixedWidth(120) + params_layout.addWidget(self.test_conditions_input, 4, 1) + + # Button frame + button_frame = QFrame() + button_frame.setFrameShape(QFrame.NoFrame) + button_layout = QVBoxLayout(button_frame) + button_layout.setContentsMargins(0, 0, 0, 0) + + self.start_button = QPushButton("START TEST") + self.start_button.setStyleSheet(f""" + QPushButton {{ + background-color: {self.accent_color}; + color: {self.fg_color}; + font-weight: bold; + padding: 6px; + border-radius: 4px; + }} + QPushButton:disabled {{ + background-color: #4C566A; + color: #D8DEE9; + }} + """) + self.start_button.clicked.connect(self.start_test) + button_layout.addWidget(self.start_button) + + self.stop_button = QPushButton("STOP TEST") + self.stop_button.setStyleSheet(f""" + QPushButton {{ + background-color: {self.warning_color}; + color: {self.fg_color}; + font-weight: bold; + padding: 6px; + border-radius: 4px; + }} + QPushButton:disabled {{ + background-color: #4C566A; + color: #D8DEE9; + }} + """) + self.stop_button.clicked.connect(self.stop_test) + self.stop_button.setEnabled(False) + button_layout.addWidget(self.stop_button) # Continuous mode checkbox - self.continuous_var = tk.BooleanVar(value=True) - ttk.Checkbutton(button_frame, text="Continuous Mode", variable=self.continuous_var).pack(side=tk.TOP, pady=5) + self.continuous_mode_check = QCheckBox("Continuous Mode") + self.continuous_mode_check.setChecked(True) + self.continuous_mode_check.setStyleSheet(f"color: {self.fg_color};") + button_layout.addWidget(self.continuous_mode_check) + + controls_layout.addWidget(button_frame) + self.main_layout.addWidget(controls_frame) # Plot area - self.plot_frame = ttk.Frame(self.content_frame) - self.plot_frame.pack(fill=tk.BOTH, expand=True, padx=20, pady=(0, 5)) self.setup_plot() - + # Status bar - self.status_var = tk.StringVar() - self.status_var.set("Ready") - self.status_label = ttk.Label(self.root, textvariable=self.status_var, style='Status.TLabel', padding=(0, 5), anchor=tk.W) - self.status_label.place(x=20, relx=0, rely=1.0, anchor='sw', relwidth=0.96, height=28) + self.status_bar = self.statusBar() + self.status_bar.setStyleSheet(f"color: {self.fg_color};") + self.status_bar.showMessage("Ready") + + # Apply dark theme + self.setStyleSheet(f""" + QMainWindow {{ + background-color: {self.bg_color}; + }} + QLabel {{ + color: {self.fg_color}; + }} + QLineEdit {{ + background-color: #3B4252; + color: {self.fg_color}; + border: 1px solid #4C566A; + border-radius: 3px; + padding: 2px; + }} + """) def setup_plot(self): """Configure the matplotlib plot""" - self.fig = Figure(figsize=(8, 5), dpi=100, facecolor='#2E3440') - # Adjust margins to give more space on right side + self.fig = Figure(figsize=(8, 5), dpi=100, facecolor=self.bg_color) self.fig.subplots_adjust(left=0.1, right=0.88, top=0.9, bottom=0.15) self.ax = self.fig.add_subplot(111) self.ax.set_facecolor('#3B4252') - # Set initial voltage range based on charge/discharge cutoffs ±0.2V + # Set initial voltage range voltage_padding = 0.2 - min_voltage = max(0, self.discharge_cutoff.get() - voltage_padding) - max_voltage = self.charge_cutoff.get() + voltage_padding + min_voltage = max(0, 0.9 - voltage_padding) + max_voltage = 1.43 + voltage_padding self.ax.set_ylim(min_voltage, max_voltage) # Voltage plot @@ -227,11 +603,11 @@ class BatteryTester: self.ax.set_ylabel("Voltage (V)", color='#00BFFF') self.ax.tick_params(axis='y', labelcolor='#00BFFF') - # Current plot (right axis) - set initial range based on test current + # Current plot (right axis) self.ax2 = self.ax.twinx() current_padding = 0.05 - test_current = self.c_rate.get() * self.capacity.get() - max_current = test_current * 1.5 # Add 50% padding + test_current = 0.1 * 0.2 # Default values + max_current = test_current * 1.5 self.ax2.set_ylim(-max_current - current_padding, max_current + current_padding) self.line_current, = self.ax2.plot([], [], 'r-', label='Current (A)', linewidth=2) @@ -243,29 +619,26 @@ class BatteryTester: self.ax.tick_params(axis='x', colors=self.fg_color) self.ax.grid(True, color='#4C566A') - # Position legends to avoid overlap + # Position legends self.ax.legend(loc='upper left', bbox_to_anchor=(0.01, 0.99)) self.ax2.legend(loc='upper right', bbox_to_anchor=(0.99, 0.99)) # Embed plot - self.canvas = FigureCanvasTkAgg(self.fig, master=self.plot_frame) - self.canvas.draw() - canvas_widget = self.canvas.get_tk_widget() - canvas_widget.configure(bg='#2E3440', bd=0, highlightthickness=0) - canvas_widget.pack(side=tk.TOP, fill=tk.BOTH, expand=True, pady=(10, 0)) + self.canvas = FigureCanvas(self.fig) + self.canvas.setStyleSheet(f"background-color: {self.bg_color};") + self.main_layout.addWidget(self.canvas, 1) def init_device(self): """Initialize the ADALM1000 device with continuous measurement""" try: - # First try to clean up any existing session + # Clean up any existing session if hasattr(self, 'session'): try: self.session.end() del self.session except: pass - - # Add small delay to allow device to reset + time.sleep(1) self.session = pysmu.Session(ignore_dataflow=True, queue_size=10000) @@ -273,7 +646,6 @@ class BatteryTester: raise Exception("No ADALM1000 detected - check connections") self.dev = self.session.devices[0] - # Reset channels self.dev.channels['A'].mode = pysmu.Mode.HI_Z self.dev.channels['B'].mode = pysmu.Mode.HI_Z self.dev.channels['A'].constant(0) @@ -281,136 +653,93 @@ class BatteryTester: self.session.start(0) - self.status_light.itemconfig(self.status_indicator, fill='green') - self.connection_label.config(text="Connected") - self.status_var.set("Device connected | Ready to measure") + self.status_light.setStyleSheet(f"background-color: green; border-radius: 10px;") + self.connection_label.setText("Connected") + self.status_bar.showMessage("Device connected | Ready to measure") self.session_active = True - self.start_button.config(state=tk.NORMAL) + self.start_button.setEnabled(True) - # Start continuous measurement thread - self.measurement_event = threading.Event() - self.measurement_event.set() - self.measurement_thread = threading.Thread( - target=self.continuous_measurement, - daemon=True - ) + # Start measurement thread + self.measurement_thread = MeasurementThread(self.dev, self.interval) + self.measurement_thread.update_signal.connect(self.update_measurements) + self.measurement_thread.error_signal.connect(self.handle_device_error) + + # Start the QThread directly (no need for threading.Thread) self.measurement_thread.start() except Exception as e: - self.handle_device_error(e) + self.handle_device_error(str(e)) - def continuous_measurement(self): - """Continuous measurement with moving average filtering and optimized I/O""" - filter_window_size = 10 - voltage_window = [] - current_window = [] - last_plot_update = 0 - last_ui_update = 0 - log_buffer = [] - update_interval = 1.0 # Update UI at 1Hz max + @pyqtSlot(float, float, float) + def update_measurements(self, voltage, current, current_time): + """Update measurements from the measurement thread""" + self.time_data.append(current_time) + self.voltage_data.append(voltage) + self.current_data.append(current) - # Initialize start_time for measurements - if not hasattr(self, 'start_time'): - self.start_time = time.time() + # Update display + self.voltage_label.setText(f"{voltage:.4f}") + self.current_label.setText(f"{current:.4f}") + self.time_label.setText(self.format_time(current_time)) + + # Throttle plot updates to avoid recursive repaint + now = time.time() + if not hasattr(self, '_last_plot_update'): + self._last_plot_update = 0 + + if now - self._last_plot_update > 0.1: # Update plot max 10 times per second + self._last_plot_update = now + QTimer.singleShot(0, self.update_plot) - while self.measurement_event.is_set() and self.root.winfo_exists(): - try: - # Read multiple samples for better accuracy - samples = self.dev.read(filter_window_size, 500, True) - if not samples: - raise DeviceDisconnectedError("No samples received") - - # Get voltage from Channel B (HI_Z mode) and current from Channel A - raw_voltage = np.mean([s[1][0] for s in samples]) # Channel B voltage - raw_current = np.mean([s[0][1] for s in samples]) # Channel A current + def update_status(self): + """Update status information periodically""" + if self.test_running: + # Update capacity calculations if in test mode + if self.measuring and self.time_data: current_time = time.time() - self.start_time + delta_t = current_time - self.last_update_time + self.last_update_time = current_time - # Apply moving average filter - voltage_window.append(raw_voltage) - current_window.append(raw_current) - - if len(voltage_window) > filter_window_size: - voltage_window.pop(0) - current_window.pop(0) - - voltage = np.mean(voltage_window) - current = np.mean(current_window) - - # Store filtered data - self.time_data.append(current_time) - self.voltage_data.append(voltage) - self.current_data.append(current) - - # Throttle UI updates to prevent lag - now = time.time() - if now - last_ui_update > update_interval: - self.safe_after(0, lambda: self.update_measurement_display( - voltage, current, current_time - )) - last_ui_update = now - - # Throttle plot updates even more (1Hz max) - if now - last_plot_update > 1.0: - self.safe_after(0, self.update_plot) - last_plot_update = now - - # Buffered logging - if self.test_running and hasattr(self, 'current_cycle_file'): - log_buffer.append([ - f"{current_time:.3f}", - f"{voltage:.6f}", - f"{current:.6f}", - self.test_phase.get(), - f"{self.capacity_ah.get():.4f}", - f"{self.charge_capacity.get():.4f}", - f"{self.coulomb_efficiency.get():.1f}", - f"{self.cycle_count.get()}" - ]) - - # Write in chunks of 10 samples - if len(log_buffer) >= 10: - with open(self.filename, 'a', newline='') as f: - writer = csv.writer(f) - writer.writerows(log_buffer) - log_buffer.clear() - - time.sleep(max(0.05, self.interval)) - - except Exception as e: - error_msg = str(e) - if self.root.winfo_exists(): - self.safe_after(0, lambda msg=error_msg: - self.handle_device_error(f"Measurement error: {msg}") if self.root.winfo_exists() else None) - break - - # Flush remaining buffer on exit - if log_buffer and hasattr(self, 'current_cycle_file'): - with open(self.filename, 'a', newline='') as f: - writer = csv.writer(f) - writer.writerows(log_buffer) + if self.test_phase == "Discharge": + current_current = abs(self.current_data[-1]) + self.capacity_ah += current_current * delta_t / 3600 + self.capacity_label.setText(f"{self.capacity_ah:.4f}") + elif self.test_phase == "Charge": + current_current = abs(self.current_data[-1]) + self.charge_capacity += current_current * delta_t / 3600 + self.charge_capacity_label.setText(f"{self.charge_capacity:.4f}") def start_test(self): """Start the full battery test cycle""" + # Clean up any previous test + if hasattr(self, 'test_sequence_thread'): + self.test_sequence_thread.quit() + self.test_sequence_thread.wait(500) + if hasattr(self, 'test_sequence_worker'): + self.test_sequence_worker.deleteLater() + del self.test_sequence_thread + + # Reset stop flag + self.request_stop = False + if not self.test_running: try: + # Get parameters from UI + self.capacity = float(self.capacity_input.text()) + self.charge_cutoff = float(self.charge_cutoff_input.text()) + self.discharge_cutoff = float(self.discharge_cutoff_input.text()) + self.rest_time = float(self.rest_time_input.text()) + self.c_rate = float(self.c_rate_input.text()) + # Validate inputs - if self.capacity.get() <= 0: + if self.capacity <= 0: raise ValueError("Battery capacity must be positive") - if self.charge_cutoff.get() <= self.discharge_cutoff.get(): + if self.charge_cutoff <= self.discharge_cutoff: raise ValueError("Charge cutoff must be higher than discharge cutoff") - if self.c_rate.get() <= 0: + if self.c_rate <= 0: raise ValueError("C-rate must be positive") - # Set continuous mode based on checkbox - self.continuous_mode = self.continuous_var.get() - - # Reset timing for new test - self.measurement_start_time = time.time() - self.test_start_time = time.time() - - # Calculate target current - test_current = self.c_rate.get() * self.capacity.get() - + test_current = self.c_rate * self.capacity if test_current > 0.2: raise ValueError("Current must be ≤200mA (0.2A) for ADALM1000") @@ -419,72 +748,127 @@ class BatteryTester: self.voltage_data.clear() self.current_data.clear() self.phase_data.clear() - self.capacity_ah.set(0.0) - self.charge_capacity.set(0.0) - self.coulomb_efficiency.set(0.0) - self.cycle_count.set(0) + self.start_time = time.time() + self.last_update_time = self.start_time + self.capacity_ah = 0.0 + self.charge_capacity = 0.0 + self.coulomb_efficiency = 0.0 + self.cycle_count = 0 - # Ensure plot is properly reset for new test - self.reset_plot() + if hasattr(self, 'measurement_thread'): + self.measurement_thread.start_time = time.time() + + # Reset plot with proper ranges + self.reset_plot() - # Generate base filename without cycle number + # Generate filename and create log file timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") self.base_filename = os.path.join(self.log_dir, f"battery_test_{timestamp}") - self.current_cycle_file = None + self.create_cycle_log_file() - # Start test thread + # Start test self.test_running = True self.start_time = time.time() self.last_update_time = time.time() - self.test_phase.set("Initial Discharge") + self.test_phase = "Initial Discharge" + self.phase_label.setText(self.test_phase) - self.start_button.config(state=tk.DISABLED) - self.stop_button.config(state=tk.NORMAL) - self.status_var.set(f"Test started | Discharging to {self.discharge_cutoff.get()}V @ {test_current:.3f}A") + self.start_button.setEnabled(False) + self.stop_button.setEnabled(True) + self.status_bar.showMessage(f"Test started | Discharging to {self.discharge_cutoff}V @ {test_current:.3f}A") - # Start test sequence in a new thread - self.test_thread = threading.Thread(target=self.run_test_sequence, daemon=True) - self.test_thread.start() + # Start test sequence in a QThread + self.test_sequence_thread = QThread() + self.test_sequence_worker = TestSequenceWorker( + self.dev, + test_current, + self.charge_cutoff, + self.discharge_cutoff, + self.rest_time, + self.continuous_mode_check.isChecked(), + self # Pass reference to main window for callbacks + ) + self.test_sequence_worker.moveToThread(self.test_sequence_thread) + + # Connect signals + self.test_sequence_worker.update_phase.connect(self.update_test_phase) + self.test_sequence_worker.update_status.connect(self.status_bar.showMessage) + self.test_sequence_worker.test_completed.connect(self.finalize_test) + self.test_sequence_worker.error_occurred.connect(self.handle_test_error) + self.test_sequence_worker.finished.connect(self.test_sequence_thread.quit) + self.test_sequence_worker.finished.connect(self.test_sequence_worker.deleteLater) + self.test_sequence_thread.finished.connect(self.test_sequence_thread.deleteLater) + + # Start the thread and the worker's run method + self.test_sequence_thread.start() + QTimer.singleShot(0, self.test_sequence_worker.run) + + # Start capacity calculation timer if not already running + if not self.status_timer.isActive(): + self.status_timer.start(1000) except Exception as e: - messagebox.showerror("Error", str(e)) - + QMessageBox.critical(self, "Error", str(e)) + # Ensure buttons are in correct state if error occurs + self.start_button.setEnabled(True) + self.stop_button.setEnabled(False) + def create_cycle_log_file(self): """Create a new log file for the current cycle""" - # Close previous file if exists - if hasattr(self, 'current_cycle_file') and self.current_cycle_file: - try: - self.current_cycle_file.close() - except Exception as e: - print(f"Error closing previous log file: {e}") - - # Check write permissions - if not os.access(self.log_dir, os.W_OK): - messagebox.showerror("Error", f"No write permissions in {self.log_dir}") - return False - - # Create new log file with sequential suffix - suffix = 1 - while True: - self.filename = f"{self.base_filename}_{suffix}.csv" - if not os.path.exists(self.filename): - break - suffix += 1 - try: - self.current_cycle_file = open(self.filename, 'w', newline='') - self.log_writer = csv.writer(self.current_cycle_file) - self.log_writer.writerow(["Time(s)", "Voltage(V)", "Current(A)", "Phase", - "Discharge_Capacity(Ah)", "Charge_Capacity(Ah)", - "Coulomb_Eff(%)", "Cycle"]) - self.log_buffer = [] - return True + # Close previous file if exists + if hasattr(self, 'current_cycle_file') and self.current_cycle_file: + try: + self.current_cycle_file.close() + except Exception as e: + print(f"Error closing previous log file: {e}") + + # Ensure log directory exists + os.makedirs(self.log_dir, exist_ok=True) + + if not os.access(self.log_dir, os.W_OK): + QMessageBox.critical(self, "Error", f"No write permissions in {self.log_dir}") + return False + + # Generate unique filename + timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + self.filename = os.path.join(self.log_dir, f"battery_test_{timestamp}.csv") + + # Open new file + try: + self.current_cycle_file = open(self.filename, 'w', newline='') + + # Write header with test parameters + test_current = self.c_rate * self.capacity + test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A" + + self.current_cycle_file.write(f"# ADALM1000 Battery Test Log\n") + self.current_cycle_file.write(f"# Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") + self.current_cycle_file.write(f"# Battery Capacity: {self.capacity} Ah\n") + self.current_cycle_file.write(f"# Test Current: {test_current:.3f} A (C/{1/self.c_rate:.1f})\n") + self.current_cycle_file.write(f"# Charge Cutoff: {self.charge_cutoff} V\n") + self.current_cycle_file.write(f"# Discharge Cutoff: {self.discharge_cutoff} V\n") + self.current_cycle_file.write(f"# Rest Time: {self.rest_time} hours\n") + self.current_cycle_file.write(f"# Test Conditions/Chemistry: {test_conditions}\n") + self.current_cycle_file.write("#\n") + + # Write data header + self.log_writer = csv.writer(self.current_cycle_file) + self.log_writer.writerow([ + "Time(s)", "Voltage(V)", "Current(A)", "Phase", + "Discharge_Capacity(Ah)", "Charge_Capacity(Ah)", + "Coulomb_Eff(%)", "Cycle" + ]) + self.log_buffer = [] + return True + except Exception as e: + QMessageBox.critical(self, "Error", f"Failed to create log file: {e}") + return False except Exception as e: - messagebox.showerror("Error", f"Failed to create log file: {e}") + print(f"Error in create_cycle_log_file: {e}") return False - @staticmethod - def format_time(seconds): + def format_time(self, seconds): """Convert seconds to hh:mm:ss format""" hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) @@ -492,326 +876,218 @@ class BatteryTester: return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def stop_test(self): - """Request immediate stop of the test and clean up all test data""" + """Request immediate stop of the test""" if not self.test_running: return - + self.request_stop = True self.test_running = False self.measuring = False - self.test_phase.set("Idle") # Ensure phase is set to Idle - - # Immediately set device to safe state + self.test_phase = "Idle" + self.phase_label.setText(self.test_phase) + + # Stop test sequence worker if it exists and is not already deleted + if hasattr(self, 'test_sequence_worker'): + try: + if not sip.isdeleted(self.test_sequence_worker): + self.test_sequence_worker.stop() + except: + pass + + # Reset device channels if hasattr(self, 'dev'): try: self.dev.channels['A'].mode = pysmu.Mode.HI_Z self.dev.channels['A'].constant(0) + self.dev.channels['B'].mode = pysmu.Mode.HI_Z except Exception as e: print(f"Error resetting device: {e}") - + # Clear all data buffers self.time_data.clear() self.voltage_data.clear() self.current_data.clear() self.phase_data.clear() - - # Reset test values - self.capacity_ah.set(0.0) - self.charge_capacity.set(0.0) - self.coulomb_efficiency.set(0.0) - + + # Reset capacities + self.capacity_ah = 0.0 + self.charge_capacity = 0.0 + self.coulomb_efficiency = 0.0 + # Reset plot self.reset_plot() - + + # Reset elapsed time label + self.time_label.setText("00:00:00") + # Update UI - self.status_var.set("Test stopped - Ready for new test") - self.stop_button.config(state=tk.DISABLED) - self.start_button.config(state=tk.NORMAL) - - # Finalize test data (logs, etc.) - self.safe_after(100, self.finalize_test) - - def center_window(self, window): - """Center a window on screen""" - window.update_idletasks() - width = window.winfo_width() - height = window.winfo_height() - x = (window.winfo_screenwidth() // 2) - (width // 2) - y = (window.winfo_screenheight() // 2) - (height // 2) - window.geometry(f'{width}x{height}+{x}+{y}') - - def run_test_sequence(self): - try: - test_current = self.c_rate.get() * self.capacity.get() - - while self.test_running and (self.continuous_mode or self.cycle_count.get() == 0): - # Reset stop request at start of each cycle - self.request_stop = False - self.cycle_count.set(self.cycle_count.get() + 1) - - # Create new log file for this cycle - self.create_cycle_log_file() - - # 1. Charge phase (constant current) - self.test_phase.set("Charge") - self.status_var.set(f"Charging to {self.charge_cutoff.get()}V @ {test_current:.3f}A") - self.root.update() # Force UI update - - self.measuring = True - self.dev.channels['B'].mode = pysmu.Mode.HI_Z - self.dev.channels['A'].mode = pysmu.Mode.SIMV - self.dev.channels['A'].constant(test_current) - self.charge_capacity.set(0.0) - target_voltage = self.charge_cutoff.get() - self.last_update_time = time.time() - - while self.test_running and not self.request_stop: - if not self.voltage_data: - time.sleep(0.1) - continue - - current_voltage = self.voltage_data[-1] - measured_current = abs(self.current_data[-1]) - - # Update charge capacity - now = time.time() - delta_t = now - self.last_update_time - self.last_update_time = now - self.charge_capacity.set(self.charge_capacity.get() + measured_current * delta_t / 3600) - - self.status_var.set( - f"Charging: {current_voltage:.3f}V / {target_voltage}V | " - f"Current: {measured_current:.3f}A | " - f"Capacity: {self.charge_capacity.get():.4f}Ah" - ) - self.root.update() # Force UI update - - if current_voltage >= target_voltage or self.request_stop: - break - - time.sleep(0.1) # More frequent checks - - if self.request_stop or not self.test_running: - break - - # 2. Rest period after charge - self.test_phase.set("Resting (Post-Charge)") - self.measuring = False - self.dev.channels['A'].mode = pysmu.Mode.HI_Z - self.dev.channels['A'].constant(0) - - rest_end_time = time.time() + (self.rest_time.get() * 3600) - while time.time() < rest_end_time and self.test_running and not self.request_stop: - time_left = max(0, rest_end_time - time.time()) - self.status_var.set( - f"Resting after charge | " - f"Time left: {time_left/60:.1f} min" - ) - self.root.update() - time.sleep(1) # Check every second for stop request - - if self.request_stop or not self.test_running: - break - - # 3. Discharge phase (capacity measurement) - self.test_phase.set("Discharge") - self.status_var.set(f"Discharging to {self.discharge_cutoff.get()}V @ {test_current:.3f}A") - self.root.update() - - self.measuring = True - self.dev.channels['A'].mode = pysmu.Mode.SIMV - self.dev.channels['A'].constant(-test_current) - self.capacity_ah.set(0.0) - self.last_update_time = time.time() - - while self.test_running and not self.request_stop: - if not self.current_data: - time.sleep(0.1) - continue - - current_voltage = self.voltage_data[-1] - current_current = abs(self.current_data[-1]) - - # Capacity calculation - now = time.time() - delta_t = now - self.last_update_time - self.last_update_time = now - self.capacity_ah.set(self.capacity_ah.get() + current_current * delta_t / 3600) - - if not self.continuous_var.get() and self.continuous_mode: # Only update if it was previously enabled - self.continuous_mode = False # Ensure we don't start a new cycle - self.status_var.set( - f"Continuous Mode disabled | " - f"Discharging to {self.discharge_cutoff.get()}V (will stop after this cycle) | " - f"Current: {current_current:.3f}A | " - f"Capacity: {self.capacity_ah.get():.4f}Ah" - ) - self.root.update() # Force UI update - - else: - # Default status message - self.status_var.set( - f"Discharging: {current_voltage:.3f}V / {self.discharge_cutoff.get()}V | " - f"Current: {current_current:.3f}A | " - f"Capacity: {self.capacity_ah.get():.4f}Ah" - ) - - self.root.update() - - if current_voltage <= self.discharge_cutoff.get() or self.request_stop: - break - - if not self.continuous_var.get(): - self.test_running = False - self.test_phase.set("Idle") # Explicitly set to Idle when stopping - break # Exit the main test loop - - # 4. Rest period after discharge (only if not stopping) - if self.test_running and not self.request_stop: - self.test_phase.set("Resting (Post-Discharge)") - self.measuring = False - self.dev.channels['A'].mode = pysmu.Mode.HI_Z - self.dev.channels['A'].constant(0) - - rest_end_time = time.time() + (self.rest_time.get() * 3600) - while time.time() < rest_end_time and self.test_running and not self.request_stop: - time_left = max(0, rest_end_time - time.time()) - self.status_var.set( - f"Resting after discharge | " - f"Time left: {time_left/60:.1f} min" - ) - self.root.update() - time.sleep(1) - - # Calculate Coulomb efficiency if not stopping - if not self.request_stop and self.charge_capacity.get() > 0: - efficiency = (self.capacity_ah.get() / self.charge_capacity.get()) * 100 - self.coulomb_efficiency.set(efficiency) - - # Update cycle info - self.status_var.set( - f"Cycle {self.cycle_count.get()} complete | " - f"Discharge: {self.capacity_ah.get():.3f}Ah | " - f"Charge: {self.charge_capacity.get():.3f}Ah | " - f"Efficiency: {self.coulomb_efficiency.get():.1f}%" - ) - self.root.update() - - # Write cycle summary to log file - self.write_cycle_summary() - - # Flush remaining buffer data - if hasattr(self, 'log_buffer') and self.log_buffer: - with open(self.filename, 'a', newline='') as f: - writer = csv.writer(f) - writer.writerows(self.log_buffer) - self.log_buffer.clear() - - # Finalize test if stopped or completed - self.safe_after(0, self.finalize_test) - - except Exception as e: - error_msg = str(e) - if self.root.winfo_exists(): - self.safe_after(0, lambda msg=error_msg: messagebox.showerror("Test Error", msg)) - self.safe_after(0, self.finalize_test) + self.status_bar.showMessage("Test stopped - Ready for new test") + self.stop_button.setEnabled(False) + self.start_button.setEnabled(True) def finalize_test(self): """Final cleanup after test completes or is stopped""" - self.measuring = False - if hasattr(self, 'dev'): - try: - self.dev.channels['A'].constant(0) - except Exception as e: - print(f"Error resetting device: {e}") - - # Flush and close current log file - if hasattr(self, 'log_buffer') and self.log_buffer and hasattr(self, 'log_writer'): - try: - self.log_writer.writerows(self.log_buffer) - self.log_buffer.clear() - except Exception as e: - print(f"Error flushing log buffer: {e}") - - if hasattr(self, 'current_cycle_file'): - try: - self.current_cycle_file.close() - except Exception as e: - print(f"Error closing log file: {e}") - - self.start_button.config(state=tk.NORMAL) - self.stop_button.config(state=tk.DISABLED) - self.request_stop = False - - message = ( - f"Test safely stopped after discharge phase | " - f"Cycle {self.cycle_count.get()} completed | " - f"Final capacity: {self.capacity_ah.get():.3f}Ah" - ) - self.status_var.set(message) - - self.safe_after(0, lambda: messagebox.showinfo( - "Test Completed", - f"Test was safely stopped after discharge phase.\n\n" - f"Final discharge capacity: {self.capacity_ah.get():.3f}Ah\n" - f"Total cycles completed: {self.cycle_count.get()}" - )) - - def update_measurement_display(self, voltage, current, current_time): - """Update all measurement displays at once (throttled to 1Hz)""" try: - # Update all values regardless of change - self.voltage_label.config(text=f"{voltage:.4f}") - self.current_label.config(text=f"{current:.4f}") - self.capacity_label.config(text=f"{self.capacity_ah.get():.4f}") - self.charge_capacity_label.config(text=f"{self.charge_capacity.get():.4f}") - self.efficiency_label.config(text=f"{self.coulomb_efficiency.get():.1f}") - self.cycle_label.config(text=f"{self.cycle_count.get()}") - self.phase_label.config(text=self.test_phase.get()) - self.time_label.config(text=self.format_time(current_time)) - + # 1. Stop any active measurement or test operations + self.measuring = False + self.test_running = False + + # 2. Reset device to safe state + if hasattr(self, 'dev'): + try: + self.dev.channels['A'].mode = pysmu.Mode.HI_Z + self.dev.channels['A'].constant(0) + self.dev.channels['B'].mode = pysmu.Mode.HI_Z + except Exception as e: + print(f"Error resetting device in finalize: {e}") + + # 3. Clean up test sequence thread safely + if hasattr(self, 'test_sequence_thread'): + try: + # Check if thread is still running + if self.test_sequence_thread.isRunning(): + # First try to stop the worker if it exists + if hasattr(self, 'test_sequence_worker'): + try: + self.test_sequence_worker.stop() + except RuntimeError: + pass # Already deleted + + # Quit the thread + self.test_sequence_thread.quit() + self.test_sequence_thread.wait(500) + except RuntimeError: + pass # Already deleted + except Exception as e: + print(f"Error stopping test sequence thread: {e}") + finally: + # Only try to delete if the object still exists + if hasattr(self, 'test_sequence_worker'): + try: + if not sip.isdeleted(self.test_sequence_worker): + self.test_sequence_worker.deleteLater() + except: + pass + + # Remove references + if hasattr(self, 'test_sequence_thread'): + try: + if not sip.isdeleted(self.test_sequence_thread): + self.test_sequence_thread.deleteLater() + except: + pass + finally: + if hasattr(self, 'test_sequence_thread'): + del self.test_sequence_thread + + # 4. Finalize log file + test_current = self.c_rate * self.capacity + test_conditions = self.test_conditions_input.text() if hasattr(self, 'test_conditions_input') else "N/A" + + if hasattr(self, 'current_cycle_file') and self.current_cycle_file is not None: + try: + # Write any buffered data + if hasattr(self, 'log_buffer') and self.log_buffer: + self.log_writer.writerows(self.log_buffer) + self.log_buffer.clear() + + # Write test summary + self.current_cycle_file.write("\n# TEST SUMMARY\n") + self.current_cycle_file.write(f"# Test Parameters:\n") + self.current_cycle_file.write(f"# - Battery Capacity: {self.capacity} Ah\n") + self.current_cycle_file.write(f"# - Test Current: {test_current:.3f} A (C/{1/self.c_rate:.1f})\n") + self.current_cycle_file.write(f"# - Charge Cutoff: {self.charge_cutoff} V\n") + self.current_cycle_file.write(f"# - Discharge Cutoff: {self.discharge_cutoff} V\n") + self.current_cycle_file.write(f"# - Test Conditions: {test_conditions}\n") + self.current_cycle_file.write(f"# Results:\n") + self.current_cycle_file.write(f"# - Cycles Completed: {self.cycle_count}\n") + self.current_cycle_file.write(f"# - Final Discharge Capacity: {self.capacity_ah:.4f} Ah\n") + self.current_cycle_file.write(f"# - Final Charge Capacity: {self.charge_capacity:.4f} Ah\n") + self.current_cycle_file.write(f"# - Coulombic Efficiency: {self.coulomb_efficiency:.1f}%\n") + + self.current_cycle_file.close() + except Exception as e: + print(f"Error closing log file: {e}") + finally: + self.current_cycle_file = None + + # 5. Reset UI and state + self.request_stop = False + self.start_button.setEnabled(True) + self.stop_button.setEnabled(False) + + # 6. Show completion message if test wasn't stopped by user + if not self.request_stop: + message = ( + f"Test completed | " + f"Cycle {self.cycle_count} | " + f"Capacity: {self.capacity_ah:.3f}Ah | " + f"Efficiency: {self.coulomb_efficiency:.1f}%" + ) + self.status_bar.showMessage(message) + + QMessageBox.information( + self, + "Test Completed", + f"Test completed successfully.\n\n" + f"Test Parameters:\n" + f"- Capacity: {self.capacity} Ah\n" + f"- Current: {test_current:.3f} A (C/{1/self.c_rate:.1f})\n" + f"- Charge Cutoff: {self.charge_cutoff} V\n" + f"- Discharge Cutoff: {self.discharge_cutoff} V\n" + f"- Conditions: {test_conditions}\n\n" + f"Results:\n" + f"- Cycles: {self.cycle_count}\n" + f"- Discharge capacity: {self.capacity_ah:.3f}Ah\n" + f"- Coulombic efficiency: {self.coulomb_efficiency:.1f}%" + ) + except Exception as e: - print(f"GUI update error: {e}") + print(f"Error in finalize_test: {e}") + import traceback + traceback.print_exc() + # Ensure we don't leave the UI in a locked state + self.start_button.setEnabled(True) + self.stop_button.setEnabled(False) + self.status_bar.showMessage("Error during test finalization") def reset_plot(self): """Reset the plot completely for a new test""" - # Clear the data lines self.line_voltage.set_data([], []) self.line_current.set_data([], []) - # Reset the data buffers self.time_data.clear() self.voltage_data.clear() self.current_data.clear() - # Set reasonable initial axis ranges voltage_padding = 0.2 - min_voltage = max(0, self.discharge_cutoff.get() - voltage_padding) - max_voltage = self.charge_cutoff.get() + voltage_padding - self.ax.set_xlim(0, 10) # 10s initial range + min_voltage = max(0, self.discharge_cutoff - voltage_padding) + max_voltage = self.charge_cutoff + voltage_padding + + # Reset X and Y axes + self.ax.set_xlim(0, 10) # Start at 0 with 10s initial window self.ax.set_ylim(min_voltage, max_voltage) + self.ax2.set_xlim(0, 10) # Sync twin axis current_padding = 0.05 - test_current = self.c_rate.get() * self.capacity.get() - max_current = test_current * 1.5 # 50% padding + test_current = self.c_rate * self.capacity + max_current = test_current * 1.5 self.ax2.set_ylim(-max_current - current_padding, max_current + current_padding) - # Force redraw self.canvas.draw() - + def write_cycle_summary(self): """Write cycle summary to the current cycle's log file""" if not hasattr(self, 'current_cycle_file') or not self.current_cycle_file: return summary_line = ( - f"Cycle {self.cycle_count.get()} Summary - " - f"Discharge={self.capacity_ah.get():.4f}Ah, " - f"Charge={self.charge_capacity.get():.4f}Ah, " - f"Efficiency={self.coulomb_efficiency.get():.1f}%" + f"Cycle {self.cycle_count} Summary - " + f"Discharge={self.capacity_ah:.4f}Ah, " + f"Charge={self.charge_capacity:.4f}Ah, " + f"Efficiency={self.coulomb_efficiency:.1f}%" ) - # Ensure file is open and write summary try: if self.log_buffer: self.log_writer.writerows(self.log_buffer) @@ -822,63 +1098,78 @@ class BatteryTester: print(f"Error writing cycle summary: {e}") def update_plot(self): - """Optimized plot update with change detection""" - if not self.time_data: - return + """More reliable plotting with better error handling""" + try: + # Create local copies safely + with self.plot_mutex: + if not self.time_data or not self.voltage_data or not self.current_data: + return + + if len(self.time_data) != len(self.voltage_data) or len(self.time_data) != len(self.current_data): + # Find the minimum length to avoid mismatch + min_len = min(len(self.time_data), len(self.voltage_data), len(self.current_data)) + x_data = np.array(self.time_data[-min_len:]) + y1_data = np.array(self.voltage_data[-min_len:]) + y2_data = np.array(self.current_data[-min_len:]) + else: + x_data = np.array(self.time_data) + y1_data = np.array(self.voltage_data) + y2_data = np.array(self.current_data) - # Force update more frequently at start of test - if len(self.time_data) < 10 or (time.time() - getattr(self, '_last_plot_time', 0)) > 1.0: - self.line_voltage.set_data(self.time_data, self.voltage_data) - self.line_current.set_data(self.time_data, self.current_data) - self.auto_scale_axes() + # Update plot data + self.line_voltage.set_data(x_data, y1_data) + self.line_current.set_data(x_data, y2_data) + + # Auto-scale when needed + if len(x_data) > 0 and x_data[-1] > self.ax.get_xlim()[1] * 0.8: + self.auto_scale_axes() + + # Force redraw + self.canvas.draw_idle() + + except Exception as e: + print(f"Plot error: {e}") + # Reset plot on error + self.line_voltage.set_data([], []) + self.line_current.set_data([], []) self.canvas.draw_idle() - self._last_plot_time = time.time() def auto_scale_axes(self): """Auto-scale plot axes with appropriate padding and strict boundaries""" if not self.time_data: return - # X-axis scaling with 5% padding but don't exceed current max time min_time = 0 max_time = self.time_data[-1] current_xlim = self.ax.get_xlim() - # Only expand axis if new data exceeds current view - if max_time > current_xlim[1] * 0.95: # 95% threshold to start expanding - new_max = max_time * 1.05 # 5% padding + if max_time > current_xlim[1] * 0.95: + new_max = max_time * 1.05 self.ax.set_xlim(min_time, new_max) self.ax2.set_xlim(min_time, new_max) - # Voltage axis scaling with strict boundaries voltage_padding = 0.2 if self.voltage_data: min_voltage = max(0, min(self.voltage_data) - voltage_padding) - max_voltage = min(5.0, max(self.voltage_data) + voltage_padding) # 5V hardware limit + max_voltage = min(5.0, max(self.voltage_data) + voltage_padding) current_ylim = self.ax.get_ylim() - if (abs(current_ylim[0] - min_voltage) > 0.1 or - abs(current_ylim[1] - max_voltage) > 0.1): + if (abs(current_ylim[0] - min_voltage) > 0.1 or abs(current_ylim[1] - max_voltage) > 0.1): self.ax.set_ylim(min_voltage, max_voltage) - # Current axis scaling with strict boundaries current_padding = 0.05 if self.current_data: - min_current = max(-0.25, min(self.current_data) - current_padding) # -250mA limit - max_current = min(0.25, max(self.current_data) + current_padding) # +250mA limit + min_current = max(-0.25, min(self.current_data) - current_padding) + max_current = min(0.25, max(self.current_data) + current_padding) current_ylim2 = self.ax2.get_ylim() - if (abs(current_ylim2[0] - min_current) > 0.02 or - abs(current_ylim2[1] - max_current) > 0.02): + if (abs(current_ylim2[0] - min_current) > 0.02 or abs(current_ylim2[1] - max_current) > 0.02): self.ax2.set_ylim(min_current, max_current) + @pyqtSlot(str) def handle_device_error(self, error): """Handle device connection errors""" - if not self.root.winfo_exists(): # Check if window still exists - return - error_msg = str(error) print(f"Device error: {error_msg}") - # Clean up session first if hasattr(self, 'session'): try: if self.session_active: @@ -887,81 +1178,94 @@ class BatteryTester: except Exception as e: print(f"Error cleaning up session: {e}") - # Update UI - self.status_light.itemconfig(self.status_indicator, fill='red') - self.connection_label.config(text="Disconnected") - self.status_var.set(f"Device error: {error_msg}") + self.status_light.setStyleSheet(f"background-color: red; border-radius: 10px;") + self.connection_label.setText("Disconnected") + self.status_bar.showMessage(f"Device error: {error_msg}") self.session_active = False self.test_running = False self.continuous_mode = False self.measuring = False - if hasattr(self, 'start_button'): - self.start_button.config(state=tk.DISABLED) - if hasattr(self, 'stop_button'): - self.stop_button.config(state=tk.DISABLED) + self.start_button.setEnabled(False) + self.stop_button.setEnabled(False) - # Clear plot + buffers self.time_data.clear() self.voltage_data.clear() self.current_data.clear() - if hasattr(self, 'line_voltage') and hasattr(self, 'line_current'): - self.line_voltage.set_data([], []) - self.line_current.set_data([], []) - self.ax.set_xlim(0, 1) - self.ax2.set_xlim(0, 1) - self.canvas.draw() - - # Show error message and attempt reconnect automatically - if self.root.winfo_exists(): - self.safe_after(100, self.attempt_reconnect) - - def safe_after(self, delay_ms, callback, *args): - """Safely schedule a callback with window existence check""" - if not self.root.winfo_exists(): - return None + + @pyqtSlot(str) + def update_test_phase(self, phase_text): + """Update the test phase display""" + self.test_phase = phase_text + self.phase_label.setText(phase_text) + + # Update log if available + if hasattr(self, 'log_buffer'): + current_time = time.time() - self.start_time + self.log_buffer.append([ + f"{current_time:.3f}", + "", + "", + phase_text, + f"{self.capacity_ah:.4f}", + f"{self.charge_capacity:.4f}", + f"{self.coulomb_efficiency:.1f}" if hasattr(self, 'coulomb_efficiency') else "0.0", + f"{self.cycle_count}" + ]) + + @pyqtSlot(str) + def handle_test_error(self, error_msg): + """Handle errors from the test sequence with complete cleanup""" + try: + # 1. Notify user + QMessageBox.critical(self, "Test Error", + f"An error occurred:\n{error_msg}\n\nAttempting to recover...") - def wrapped_callback(): - if self.root.winfo_exists(): + # 2. Stop all operations + self.stop_test() + + # 3. Reset UI elements + if hasattr(self, 'line_voltage'): try: - callback(*args) - except Exception as e: - print(f"Callback error: {e}") - - after_id = self.root.after(delay_ms, wrapped_callback) - self._after_ids.add(after_id) - return after_id + self.line_voltage.set_data([], []) + self.line_current.set_data([], []) + self.ax.set_xlim(0, 1) + self.ax2.set_xlim(0, 1) + self.canvas.draw() + except Exception as plot_error: + print(f"Plot reset error: {plot_error}") + + # 4. Update status + self.status_bar.showMessage(f"Error: {error_msg} - Reconnecting...") + self.status_light.setStyleSheet("background-color: orange; border-radius: 10px;") + + # 5. Attempt recovery + QTimer.singleShot(1000, self.attempt_reconnect) # Delay before reconnect + + except Exception as e: + print(f"Error in error handler: {e}") + # Fallback - restart application? + QMessageBox.critical(self, "Fatal Error", + "The application needs to restart due to an unrecoverable error") + QTimer.singleShot(1000, self.close) def attempt_reconnect(self): """Attempt to reconnect automatically""" - if not self.root.winfo_exists(): - return - - try: - # Show error message first - messagebox.showerror( - "Device Connection Error", - "Could not connect to ADALM1000\n\n" - "1. Check USB cable connection\n" - "2. The device will attempt to reconnect automatically" - ) - except Exception as e: - print(f"Error showing message: {e}") - return - - # Schedule reconnect attempt - self.safe_after(1000, self.reconnect_device) + QMessageBox.critical( + self, + "Device Connection Error", + "Could not connect to ADALM1000\n\n" + "1. Check USB cable connection\n" + "2. The device will attempt to reconnect automatically" + ) + + QTimer.singleShot(1000, self.reconnect_device) def reconnect_device(self): """Reconnect the device with proper cleanup""" - if not self.root.winfo_exists(): - return - - self.status_var.set("Attempting to reconnect...") - self.root.update() + self.status_bar.showMessage("Attempting to reconnect...") - # Clear any existing session if hasattr(self, 'session'): try: if self.session_active: @@ -970,62 +1274,43 @@ class BatteryTester: except: pass - # Stop any running threads self.test_running = False self.continuous_mode = False self.measuring = False - if hasattr(self, 'measurement_event'): - self.measurement_event.clear() - - # Wait for threads to finish if hasattr(self, 'measurement_thread'): - self.measurement_thread.join(timeout=1.0) - if hasattr(self, 'test_thread'): - self.test_thread.join(timeout=1.0) + self.measurement_thread.stop() - # Add small delay to allow device to reset time.sleep(1.5) - # Try to initialize device try: self.init_device() if self.session_active: - self.status_var.set("Reconnected successfully") + self.status_bar.showMessage("Reconnected successfully") return except Exception as e: print(f"Reconnect failed: {e}") - # If we get here, reconnection failed - self.status_var.set("Reconnect failed - will retry...") - self.safe_after(2000, self.reconnect_device) # Retry after 2 seconds + self.status_bar.showMessage("Reconnect failed - will retry...") + QTimer.singleShot(2000, self.reconnect_device) - def on_close(self): + def closeEvent(self, event): """Clean up on window close""" - # Set flags to stop all threads self.test_running = False self.measuring = False self.session_active = False - if hasattr(self, 'measurement_event'): - self.measurement_event.clear() - - # Cancel all pending callbacks - with self._after_lock: - for after_id in self._after_ids: - try: - self.root.after_cancel(after_id) - except: - pass - self._after_ids.clear() - - # Give threads time to clean up - timeout = 2.0 + # Stop measurement thread if hasattr(self, 'measurement_thread'): - self.measurement_thread.join(timeout=timeout) - if hasattr(self, 'test_thread'): - self.test_thread.join(timeout=timeout) - + self.measurement_thread.stop() + + # Stop test sequence thread + if hasattr(self, 'test_sequence_thread'): + if hasattr(self, 'test_sequence_worker'): + self.test_sequence_worker.stop() + self.test_sequence_thread.quit() + self.test_sequence_thread.wait(500) + # Clean up device session if hasattr(self, 'session') and self.session: try: @@ -1033,23 +1318,13 @@ class BatteryTester: except Exception as e: print(f"Error ending session: {e}") - # Finally destroy window - try: - self.root.destroy() - except: - pass + event.accept() if __name__ == "__main__": - root = tk.Tk() + app = QApplication([]) try: - app = BatteryTester(root) - root.mainloop() + window = BatteryTester() + window.show() + app.exec_() except Exception as e: - if root.winfo_exists(): - messagebox.showerror("Fatal Error", f"Application failed: {str(e)}") - else: - print(f"Fatal Error: {e}") - try: - root.destroy() - except: - pass \ No newline at end of file + QMessageBox.critical(None, "Fatal Error", f"Application failed: {str(e)}") \ No newline at end of file